
Conversational News Agent
by

John Lai

A Thesis submitted to the School of Computer Science and Engineering

In partial fulfillment of the requirements for the Degree of Bachelor of

Engineering in Computer Engineering

November 2002

Supervisor: Prof. Claude Sammut

Assessor: Dr. Andrew Taylor

ii

Abstract

Research in Information Filtering (IF) and Agent Technology have reached

a stage where integrated implementations are rapidly flourishing in num-

bers. This thesis documents the research and implementation of “CNA”, a

novel integration of a voice-enabled Conversational Agent with an Informa-

tion Filtering software, which fetches the latest news articles and learns topic

preferences of the user.

The relevant fields of Text Categorisation and Machine Learning were sur-

veyed, and various techniques were empirically verified in search of the ulti-

mate prediction engine. The system is then integrated with a script-based

Conversation Agent called “Probot.” The end system engages users in Nat-

ural Language dialogues, delivering customised news articles.

ii

Acknowledgements

First and foremost, I’d like to acknowledge my endless gratitude to my par-

ents for their never-ending support and faith. Without their love and dedi-

cation, this life milestone in life would not be reached, when the completion

of this thesis marks the completion of my undergraduate education.

I’d like to thank my friends Fiona Luk and Simon Bowden, whose support

were indispensable in the most discouraging times. I would especially like to

thank Harvey Tuch, who spent countless hours sharing his limitless thoughts

and ideas, whenever I’m in need. I’d also like to thank Paul Winning for his

kind assistance in testing the end system.

Finally, I would like to thank Waleed Kadous and Claude Sammut, whose

expertise and guidance have steered me clear of troubled waters, and homed

me in to destination.

iii

Contents

1 Introduction 1
1.1 Rationale . 1
1.2 Thesis Proposal . 2
1.3 Thesis Overview . 4

2 Background 5
2.1 Chapter Overview . 5
2.2 Agents . 7

2.2.1 Agents Overview . 7
2.2.2 Probot Scripting . 9

2.3 Information Retrieval and Filtering 13
2.3.1 Information Retrieval 13
2.3.2 Information Filtering 13
2.3.3 Evaluation Metrics . 14

2.4 Collaborative Filtering . 20
2.4.1 Collaborative Filtering Overview 20
2.4.2 Memory-Based Algorithms 21
2.4.3 Model-Based Algorithms 22
2.4.4 Suitability for Application 22

2.5 Cognitive Filtering . 23
2.5.1 Cognitive Filtering Overview 23
2.5.2 Porter Stemming Algorithm 25
2.5.3 Feature Vector Representation 27
2.5.4 TFIDF Vector Scaling 29

2.6 Machine Learning Algorithms 30
2.6.1 ZeroR . 30
2.6.2 OneR . 30
2.6.3 Näıve Bayesian Classifier 31
2.6.4 Support Vector Machines 32
2.6.5 J4.8 Classifier . 34
2.6.6 k-Nearest Neighbour 37

iv

CONTENTS v

2.7 Statistical Techniques . 39
2.7.1 Cross-Validation . 39
2.7.2 Paired-Sample t-test 40

2.8 Related Works . 41

3 System Framework 43
3.1 Chapter Overview . 43
3.2 General Requirements . 44
3.3 System Overview . 44
3.4 Functional Requirements . 45

3.4.1 CNAServer . 45
3.4.2 CNAClient . 46
3.4.3 Probot Front-End . 46

3.5 Data Flow Diagrams . 47

4 System Implementation 52
4.1 Chapter Overview . 52
4.2 Resources . 52
4.3 CNAServer . 54

4.3.1 CNAServer Overview 54
4.3.2 Command Line Arguments 54
4.3.3 CNN Headline Extractor 55
4.3.4 Headline Database . 55
4.3.5 Article Caching . 56
4.3.6 Deployment . 57

4.4 CNAClient . 58
4.4.1 CNAClient Overview 58
4.4.2 Command Line Arguments 58
4.4.3 Input/Output Interface 59
4.4.4 CNN Text Extractor 61
4.4.5 CNN Search . 61
4.4.6 User Profiles . 61
4.4.7 Weka . 62

4.5 Probot . 63
4.6 Java CNA Source Structure 65

5 Experiments 69
5.1 Chapter Overview . 69
5.2 TFIDF . 71
5.3 Stem Feature and Size Selection 72

5.3.1 Feature Selection Algorithm 72

vi CONTENTS

5.3.2 Optimal Feature Size 74
5.4 Classifier Benchmark . 76

6 Summation 79
6.1 Conclusion . 79
6.2 Future Work . 82

A Sample User Session 85

List of Tables

2.1 Expected Performance of General Predictors 18

4.1 Summary of CNAClient Commands 59

5.1 Performance Enhancements with TFIDF Vector Scaling 72

5.2 P-Values for Paired-Sample t-test of Feature Selection Algo-

rithms . 73

5.3 Comparison of Feature Selection Algorithms using Paired-Sample

t-test . 73

5.4 P-Values of Paired-Sample t-tests Between Optimal- and Var-

ious Sized Configurations . 75

5.5 Optimal Configurations for Each Classifier 76

5.6 Classifier Benchmark Over 10 Runs of Ten-Fold Cross-Validation. 76

5.7 Classifier Accuracy Comparison Using Paired-Sample t-test . . 77

5.8 Classifier F1-Measure Comparison Using Paired-Sample t-test 77

vii

List of Figures

2.1 Learning Agent Architecture (from [Tec98]) 7

2.2 Cognitive Filtering Flow Model 23

2.3 SVM - Non Optimal Decision Surface (from [YL99]) 32

2.4 SVM - Optimal Decision Surface (from [YL99]) 33

2.5 A Simple Decision Tree . 34

3.1 Overview of System . 45

3.2 Data Flow Diagram - Context Level Diagram 47

3.3 Data Flow Diagram - Level 0 Diagram 48

3.4 Data Flow Diagram - Level 1 Diagram of CNAClient 49

3.5 Data Flow Diagram - Level 1 Diagram of CNAServer 50

3.6 Data Flow Diagram - Level 2 Diagram of CNAClient’s Pre-

diction Engine . 51

4.1 Probot Context Transition Diagram 64

viii

Chapter 1

Introduction

1.1 Rationale

With the widespread adoption of the Internet as a medium for news delivery,

the need for a tool to automatically filter uninteresting articles is desirable.

In any single day, over 100 news articles may be posted on CNN.com, al-

though an end-user may only be interested in a few. However, the concern

that an aggressive filter that may incorrectly filter important articles is per-

haps the greatest deterrent from user adoption. A major component of this

thesis will be the analysis and benchmarking of current AI techniques in the

application of user preference prediction, to decide whether automated filters

are sufficiently reliable for their purpose.

As a result of Internt adoption, the routine by which users receive news

had been revolutionised. With traditional broadcasting methods such as

television or radio news, the users assume a passive role in news delivery, as

the users have no direct control over the order nor content of news reporting.

On the other end of the spectrum, Web-based news delivery requires users to

1

2 CHAPTER 1. INTRODUCTION

undertake the active role in browsing headlines and deciding on interesting

articles to read. However, with the vast amount of information delivered on a

day-to-day basis, searching through headlines for the minority of interesting

articles can be quite tiresome on the user. This thesis aims to implement a

system that allows users to play a semi-active role in news delivery, by using

a voice-capable Conversational Agent interface to let users to chat to the

system to discover interesting news of the day, while uninteresting articles

are algorithmically filtered.

1.2 Thesis Proposal

“What is this Conversational News Agent you’re trying to build?”

“It’s a computer program that talks you about news of the day,

and learns the topics you like.”

The proposed system is named “CNA”, pronounced “See-na”, is short for

“Conversational News Agent.” Elaborating on the meaning of title, the

“Conversational” part means that the user will engage in Natural Language

conversations with the system to achieve desired operations. The “News”

part refers to the issue of news delivery, while the word “Agent” characterises

the system as an intelligent software that learns about its user through in-

teraction.

The envisaged system should allow the following interaction:

User: What’s happening in Afghanistan?

CNA: Three detainees returned to Afghanistan. Would you like

1.2. THESIS PROPOSAL 3

to read it?

User: Yeah go ahead

CNA: Three Afghans who had been in U.S. custody at Guan-

tanamo Bay, Cuba, have been returned to Afghanistan, the In-

ternational Committee of the Red Cross said Monday. Should I

go on?

User: No, can you go through today’s headlines?

CNA: West Nile virus linked to 2 more deaths, read it?

User: Not interested

CNA: Jupiter-like planet found near distant star, read it?

User: Yes that I like

Through conversations, CNA actively learns the news topics of interest and

disinterest to the user, so that dull articles encountered in the future can be

automatically filtered to enhance the user experience.

In order to implement a Natural Language interface, a Conversational Agent

framework is required. The “Probot” is one such framework developed by

Professor Sammut, the supervisor of this thesis, and it is also the aim of this

project to investigate potential applications on this novel agent framework.

The system will therefore utilise Probot as the user interface to support

conversational interaction.

4 CHAPTER 1. INTRODUCTION

1.3 Thesis Overview

To implement the envisaged system, it is vital to survey existing literature

in related AI research fields. Chapter 2 begins with an introduction to the

Probot agent framework on which the system is to be deployed, and then pro-

vides an in-depth review of research in Text Categorisation, which is the crux

of the problem of user preference prediction. Text Categorisation belongs to

the research fields of Information Filtering and Information Retrieval, of

which two main approaches to solving this problem, Collaborative Filter-

ing and Cognitive Filtering, will be examined. Introductions to well-known

Machine Learning algorithms, used extensively in Cognitive Filtering, will

also be presented, followed by the statistical techniques that will be used to

evaluate their performances in predicting user preference. Finally, systems

previously built by researchers in this field will be summarised.

Chapter 3 will describe the system requirements of the Conversational News

Agent, and lay out the design for integrating various components of the

system. Chapter 4 will then document the implementation of the CNA in

detail.

In order to find the best user-preference prediction engine for the system,

Chapter 5 documents the experimental process undertaken to bechmark var-

ious Text Categorisation techniques, along with analytical comparisons to

previously published results.

Finally, a discussion the outcomes of this thesis is presented in Chapter 6.

Chapter 2

Background

2.1 Chapter Overview

This chapter presents an introduction to research fields related to this thesis,

starting with a brief introduction to agents and the Probot system, then

focusing on the user preference prediction problem.

In Information Filtering (IF) systems, users interact with the system over

an extended period of time, during which the user preference is learnt by

the system. More specifically, the problem of classifying textual documents

into categories, such as “interesting” or “uninteresting”, is known as Text

Categorisation.

IF stemmed from Information Retrieval (IR), which researches the problem

of retrieving documents from a large database in response to user requests,

such as a web search engine. IF systems are distinguished from IR in that

results are tailored to the interests of each individual user, as opposed to

serving users indiscriminately. Although the CNA is an IF rather than an

IR system, it is important to present a brief overview of both research areas,

5

6 CHAPTER 2. BACKGROUND

since performance measures from IR is used extensively in IF.

Collaborative Filtering is a popular approach to the IF problem, where pro-

files about a group of users are gathered at a central database, and article

recommendations for each user are derived from the feedback of other users

with similar interests. However, Collaborative Filtering systems require a

large user base in order to deduce meaningful correlations between users, and

thus this approach is beyond the feasibility of this undergraduate project.

The other popular approach to IF is Cognitive Filtering, where prediction

is based on the content of articles. The system would maintain a history of

articles that a user has liked and disliked, and make new predictions by com-

puting the similarity of words in the new document to historic ones. Before

such computations can be made however, pre-processing must be performed

to convert textual documents into a machine tangible representation. The

Porter Stemming algorithm is commonly used to trim word suffixes so that

words such as “connected” and “connecting” will be transformed to their com-

mon word root, “connect.” This then allows documents to be represented as

vectors in the Linear Algebra sense.

Once documents are converted to a Vector Representation, Machine Learning

algorithms can then be applied. Several popular classification algorithms will

be benchmarked in this thesis, including the Support Vector Machine, which

has often been recognised as the state-of-the-art classifier in the literature.

The statistical techniques widely used in the field to benchmark classifier

performances will also be described.

Finally, related systems implemented by researchers in this field will be dis-

cussed, to identify their similarities and differences to the CNA.

2.2. AGENTS 7

2.2 Agents

2.2.1 Agents Overview

An agent is an intelligent system that interacts with its environment through

sensors and effectors. Intelligent systems were originally expected to per-

ceive through audio-visual input, communicate in natural language, have

ability to reason, solve problems and learn from its own experience. How-

ever, this turned out to be much more difficult than expected, and research

in intelligent systems has since branched into many fields, including Natural

Language Processing, Theorem Proving, Machine Learning and Vision, so

that each function can be studied in isolation. AI is now at a stage where

integration of isolated functions into intelligent systems is feasible, and such

systems are termed Intelligent Agents.

A Learning Agent is one that can acquire knowledge autonomously from the

user or other agents, by means of direct instruction or by observation and

imitation. Learning Agents could also learn from information databases or

its own experience. The typical architecture of a Learning Agent adopted

from [Tec98] is shown in Figure 2.1.

Environment

Learning Agent

Learning
Engine

Inference
Engine

Knowledge
Base

Input Sensors

Output Effectors

Figure 2.1: Learning Agent Architecture (from [Tec98])

8 CHAPTER 2. BACKGROUND

However, one must bear in mind that developing a learning engine that cap-

tures the cognitive process of learning is a very difficult task, and thus most

existing Intelligent Agents are arguably unqualified to be called Learning

Agents.

Machine Learning is an AI research area focused on developing algorithms

for systematic learning of concepts. Some learning strategies identified in the

field are: [Tec98]

• Empirical Inductive Learning From Examples - Learn concepts by com-

paring the similarity and differences between positive and negative ex-

amples, then inductively generalise a description of the similarities of

positive examples.

• Conceptual Clustering - grouping examples into different classes and

learning a description of each class.

• Reinforcement Learning - updating knowledge based on feedback from

environment.

• Genetic Algorithms - using genetic models of evolution to create a pop-

ulation of individuals over a sequence of generations.

The Conversational News Agent of this thesis is inherently a Reinforcement

Learner; articles presented to the user will be scored, from which the agent

will accumulate its knowledge base of the user’s interests. Besides learning

user preferences, which will be examined in great depth in later sections, the

CNA will also engage in Natural Language interaction with the user. The

conversational framework to be used by CNA is the “Probot” agent, which

will be introduced in the next section.

2.2. AGENTS 9

2.2.2 Probot Scripting

A Conversational Agent must allow high level Natural Language interactions

between the user and the system. Traditional Natural Language Processing

methods have attempted to parse Natural Language input into syntactical

representations, from which semantics and pragmatics are derived to allow

machine understanding of the input. However, the complexity of such ap-

proach meant that existing Conversational Agents are far from their expected

performances.

[Sam01] proposed a rule-based system called Probot which uses shallow pars-

ing techniques as opposed to complex linguistic processing. Library of re-

hearsed responses are written in Probot scripts, allowing scripted responses

to be delivered when built-in rules are successfully pattern matched to input

utterances. These rules are trivial in general, and can be grouped into con-

texts, so that the scope of various rules can be restricted only to specific topics

discussion. The system is built on top of the author’s Prolog implementation,

which can be called upon to perform more advanced logical processing.

The most commonly encountered constructs in the Probot scripting language

are:

• *

Wildcard for 0 or more words

• ~

Wildcard for 0 or more characters

• #Prolog Call

External call to Prolog

10 CHAPTER 2. BACKGROUND

• { ... | ... }
List of rules or responses separated by pipe characters. (Random se-
lection)

• [... | ...]

List of responses separated by pipe characters. (Sequential selection)

• < x >

x represents a non-terminal symbol. For example, <aff> can be en-
coded as a non-terminal to represent affirmative words such as “yes”,
“ok”, “alright” and “yeah” etc.

Response expressions are scripted with two types of constructs. Alternative

responses listed in with braces (“{”, “}”) indicate that any of the alternative

response may be chosen randomly for output when the same rule is triggered

multiple times, while square brackets (“[”, “]”) would sequentially select an

output on each rule trigger. Consider the example script below:

welcome ::

init ==>

[

Hi there! Would you like to hear some news?

|

Hello! Shall we go through the latest headlines?

]

* <aff> * ==>

[

#goto(read_headlines, [init])

]

* <neg> * ==>

[

What topics would interest you then?

#goto(search_news, [init])

]

2.2. AGENTS 11

{* computer~ * | * network * } ==>

[

{

Let me find some computer news!

|

I’ll see if I can get some computer news!

}

#goto(computer_news, [init])

]

The first line indicates that the context is called “welcome”. Upon entry, the

“init” rule is called first, which will greet the user with the “Hi there!...”

response. The user must then responsd with a sentence of utterance, which

will be patterned matched to rules in a top down fashion. For example, if the

user says “Well, alright then.”, then the “* <aff> *” rule will be matched

successfully, and will shift the conversation to the “read headlines” context

to read through the headlines. On the other hand, if the user gave a negative

response, the “* <neg> *” rule will output “What topics would interest you

then?”, and then jump to the “search news” context to search for articles.

A third possible user response would contain no affirmative nor negative

words, so that both the ‘* <aff> *” and “* <neg> *” rules would be skipped.

If it then contained either “network” or a word starting with “computer”,

the final rule in the “welcome” context will be triggered to jump to the

“computer news” context. However, if no rules were successfully matched,

a backup context will be called upon to provoke temporary conversations,

hoping that new inputs will be recognised by the system. In addition to the

backup context, Probot also supports a filter context, which is a set of rules

that will be attempted on the user utterance before the rules in the active

12 CHAPTER 2. BACKGROUND

current context are attempted. This allows universal rules to be defined, to

avoid unnecessary duplication of rules. The full description of the Probot

system can be found in [Sam01].

2.3. INFORMATION RETRIEVAL AND FILTERING 13

2.3 Information Retrieval and Filtering

2.3.1 Information Retrieval

Information Retrieval addresses the issues in retrieving data from large docu-

ment collections in response to user queries. [She94] IR traditionally resolves

around search engines where users enter keywords to search databases. It is

a well-established field of information science, and three major paradigms

have been identified in IR:

• Statistical - Selecting articles based on statistical correlations such as

word counts in documents and document collections.

• Semantic - Selects articles by attempting to capture the meaning of the

documents and user queries through Natural Language Processing.

• Contextual/Structural - Selects articles by taking advantage of the struc-

tural and contextual information

Although the CNA is not strictly an IR system 1, the IR literature has

established well defined metrics that will be used to evaluate user preference

prediction algorithms. These metrics will be defined in Section 2.3.3.

2.3.2 Information Filtering

Information Filtering addresses the problem of finding desired information

and eliminating those that are undesirable. Filtering USENET newsgroups,

1CNA allows article searching by interfacing the search engine at CNN.com, but does
not implement a retrieval system of its own.

14 CHAPTER 2. BACKGROUND

where an enormous amount of messages are posted every day, is one of the

most popular research areas of IF. [RIS+94, Lan95, She94] In contrast to IR,

where the user’s query is satisfied within a single session, the user interacts

with the IF system through multiple sessions so that the user preference can

be learned over a period of time.

Three approaches to Information Filtering have been identified in [MG87]:

• Social Filtering - Selects articles based on the relationships between

people and their subjective judgments, recommending documents based

on the feedback of other users.

• Cognitive Filtering - Selects articles based on the content of the articles.

Keyword filtering is one of the most primitive forms of this approach.

• Economic Filtering - Selects articles based on the economic cost and

benefit to the user through economic pricing mechanisms.

Since the CNA is not intended as a fee-based news service, the Economic

Filtering approach is not applicable. Social and Cognitive Filtering how-

ever, are highly relevant approaches for the desired application, and will be

described in further depth in later sections.

2.3.3 Evaluation Metrics

Formal evaluation metrics are necessary to characterise the performance of

Information Retrieval and Filtering systems. The classical metrics of the

literature are:

2.3. INFORMATION RETRIEVAL AND FILTERING 15

• Accuracy - The proportion of the system’s interesting and uninteresting

predictions that agree with the user’s assessment.

• Precision - The proportion of the system’s interesting predictions that

agree with the user’s assessment.

• Recall - The proportion of items of interest to the user that are pre-

sented to the user.

To avoid ambiguities, these metrics shall be formally defined using the defi-

nitions in [Alv02].

Formal Definitions

More formally, let a set of n news articles be the set U+.

Let U+ be a subset of news articles in U that the user rates as interesting.

Let U− be a subset of news articles in U that the user rates is uninteresting.

Using binary classification, where each article is either interesting or unin-

teresting, it follows that:

U = U+
⋃

U−

Let S+ be a subset of news articles in U that the system predicts as inter-

esting.

Let S− be a subset of news articles in U that the system predicts as unin-

teresting.

Again, using binary classification, it follows that:

U = S+
⋃

S−

16 CHAPTER 2. BACKGROUND

Each news article in U will be classified into one of U+ or U−, and also one

of S+ or S−. This means that each article will belong to one of four possible

classification combinations:

Type 1: S+
⋂

U+

Type 2: S+
⋂

U−

Type 3: S−

⋂

U+

Type 4: S−

⋂

U−

Further, let the number of articles in each of the four combinations be rep-

resented by:

n1 = |S+
⋂

U+|

n2 = |S+
⋂

U−|

n3 = |S−

⋂

U+|

n4 = |S−

⋂

U−|

Then the accuracy a of the system is defined as:

a =
n1 + n4

n

The precision p of the system is defined as:

p =
n1

n1 + n2

2.3. INFORMATION RETRIEVAL AND FILTERING 17

The recall r of the system is defined as:

r =
n1

n1 + n3

Interpretation

To assist in understanding the meaning of these metrics, the expected per-

formance in accuracy, precision and recall will be examined from four general

classifiers:

• Random - Randomly predict articles as interesting or uninteresting.

• Present All - A predictor that indiscriminately predicts all articles as

interesting.

• Present None - A predictor that indiscriminately predicts all articles

as uninteresting.

• ‘Good’ Predictor - This characterises the predictive behaviour expected

of a ‘good’ predictor.

For the purpose of comparing these classifiers, assume that a set of articles

has been labelled by the user for testing, of which 50% are labelled interesting

and 50% uninteresting. The expected performances are presented in Table

2.1.

18 CHAPTER 2. BACKGROUND

Predictor Accuracy Precision Recall
Random 50% 50% 50%

Present All 50% 50% 100%
Present None 50% 0% 0%

‘Good’ Predictor � 50% � 50% � 50%

Table 2.1: Expected Performance of General Predictors

Combined Metrics

Since multiple metrics exist for benchmarking classifiers, one needs to for-

malise how comparisons can be made decisively. Two common measures

are:

• “Precision-Recall Break-Even Point” - For a given classifier, the preci-

sion and recall values often depend on internal parameters, which can

be tuned to trade one for another. Thus the Precision-Recall Break-

Even Point of a classifier is defined to be the point where precision is

identical to recall through tuning of internal parameters.

• F-Measure - This was introduced by van Rijsbergen [VR79], and is

defined to be:

Fβ(p, r) =
(β2 + 1)pr

β2p + r

where β is the weighting parameter between precision and recall. When

precision and recall are to be weighted equally, β is set to one, and thus:

F1(p, r) =
2pr

p + r

2.3. INFORMATION RETRIEVAL AND FILTERING 19

The F1-Measure is effectively the unweighted harmonic mean of pre-

cision and recall. For the purpose of the evaluating classifiers from a

black-box perspective, the F1-Measure is a more suitable metric than

the Precision Recall Break Even Point.

The F1-Measure is perhaps the most commonly used metric in the IF

and IR literatures, since combining only precision and recall means that

the metric is based aound positive classifications. The set of articles

classified as uninteresting by both the predictor and the user (Type 4) is

not directly accounted for in the F1-Measure. This can be justified by

the following reasoning: If presenting articles that are actually inter-

esting to the user (Type 1) are considered as enhancements to the end

user experience, and Type 2 and 3 are considered as detractions, then

Type 4 articles are neutral because they neither enhance nor detract

the user experience. Such treatment of Type 4 articles are commonly

accepted in the literature for Text Categorisation, but in some experi-

ments in this thesis, it would be desirable to take into account of those

articles through the accuracy measure. Thus the arithmetic mean of

accuracy and the F1-Measure will be used in some experiments when

it is more appropriate than using F1-Measure alone, although it must

be noted that this procedure is not as commonly used.

20 CHAPTER 2. BACKGROUND

2.4 Collaborative Filtering

2.4.1 Collaborative Filtering Overview

Collaborative Filtering is a form of Social Filtering, which classifies articles

based on the subjective evaluation of other readers. In general, a database

of user preferences is maintained so that predictions on new articles can be

made for users with similar interests.

The basic steps involved in Collaborative Filtering are:

• Collect preference data for all users

• Train prediction algorithm on collected data

• Apply prediction algorithm on new articles

• Deliver articles most likely of interest to user

Two general classes of algorithms are identified:

• Memory-Based - performing computations over the entire database of

historic user preference data to make each prediction.

• Model-Based - using the database to train a model, which is then used

to make each prediction.

Both classes will be briefly described in the next two sections.

2.4. COLLABORATIVE FILTERING 21

2.4.2 Memory-Based Algorithms

The general form of the Memory-Based prediction formula is

pa,j = va + κ
n

∑

i=1

w(a, i)(vi,j − vi)

where pa,j is the predicted score on a new item j for user a, va is the average

score of articles previously scored by user a. w(a, i) is a weighting function

for the similarity between users a and i, so that the score given to item j

by user i can be used to predict the score for the same item for user a. κ

is simply a normalising factor so that the sum of the absolute values of the

weights is equal to one.

Qualitatively, if two users have similar interests, the weighting function would

produce a high value, so that the score given to a new article by one user

will be weighed strongly in making predictions for the other user. Common

weighting functions (Correlation and Vector Similarity) as well as extensions

to Memory-Based algorithms (Default Voting, Inverse User Frequency, Case

Amplification, Correlation Threshold and History Threshold) can be found in

[BHK98, Gok99].

22 CHAPTER 2. BACKGROUND

2.4.3 Model-Based Algorithms

The general form of Model-Based prediction formula is

pa,j = E(va,j) =
m

∑

i=0

iPr(va,j = i|va,k, k ∈ Ia)

where pa,j, the predicted score on a new item j for user a, is computed as

the probabilistic expected value of the actual score va,j using some underlying

probabilistic model trained over the entire user preference database, given

that the user has previously given scores to the set of articles Ia.

Qualitatively, the formula states that underlying model needs to determine

the expected value of a score given the historic data about a user. The gen-

erality of this formula means that popular Machine Learning techniques like

Clustering and Bayesian Networks can be applied in Model-Based Collabo-

rative Filtering. [UF98, BHK98]

2.4.4 Suitability for Application

Having a large user base is essential in Collaborative Filtering. The time and

resource constraints on this project means that the Collaborative Filtering

approach would infeasible; gathering sufficient users required for successful

predictions on an on-going basis is beyond the scope of an undergraduate

thesis project.

2.5. COGNITIVE FILTERING 23

2.5 Cognitive Filtering

2.5.1 Cognitive Filtering Overview

Convert Words to Morphological Stems

Remove Stop Words

Create Feature Vector

Transform Document to Word List

Apply Classifier

News Article

Classification

Figure 2.2: Cognitive Filtering Flow Model

Cognitive Filtering makes predictions based on the words in articles. Its most

primitive implemention, known as Keyword Filtering, will scan articles for

a set of user defined keywords, and use the Boolean presence or absence of

those words to decide whether the articles are interesting. This is one of the

most commonly used filtering techniques in E-mail clients.

Although the concept of Keyword Filtering appears too trivial, most of the

more advanced Cognitive Filtering techniques still use Keyword Filtering

as a pre-processor to eliminate “Stop Words”, which are words so commonly

used in every day English that they are considered valueless in the prediction

24 CHAPTER 2. BACKGROUND

process. For example, words such as “the”, “at”, “by” and “said” would fall

in the class of common stop words.

In English and many other languages such as German and French, words

often have multiple morphological forms. For example, the verb “show” has

morphological forms “showing” and “showed”, and the fact that all three

words are semantically equivalent needs to be considered in the prediction

process. It is therefore necessary to convert all words to their word stems so

that documents about “dog” and “dogs” would be considered the same topic.

The Porter Stemming algorithm is a popular method for converting words

into their morphological stems.

In the IF and IR literatures, the Vector Space Representation of documents

is commonly used. [She94, Sal83] These vectors, also commonly referred to

as Feature Vectors, Stem Feature Vectors and Attribute Vectors, are used

represent documents, where each Feature Dimension contains the frequency

of some unique word stem. Using Feature Vector representation, various

classifier algorithms can be applied to learn user preferences and make new

predictions. These classifiers will be described in detail in later sections.

2.5. COGNITIVE FILTERING 25

2.5.2 Porter Stemming Algorithm

Stemming algorithms conflate words with similar, if not identical, meanings

to their common root, so that the meaning of these equivalent words are

recognised in the process of Information Retrieval. For example, the follow-

ing words are all of the same root, and should therefore be conflated to an

identical stem:

CONNECT, CONNECTED, CONNECTING, CONNECTION, CONNECTIONS.

The following advantages of stemming are identified in the IR literature:

• To conflate words with identical/similar meaning to increase retrieval

accuracy

• To reduce the total number of words, and hence reduce size and com-

plexity of data in the IR system.

For the purpose of IR, the stemmer may produce stems that are not actual

English words, provided that different words with the same meaning are

converted to the same stem. For example, “accessory” may be converted to

“accessori”, as long as “accessories” also get converted to the same stem.

Stemming could be done by utilising a large dictionary mapping every word in

the English vocabulary to their stems, but such approach would be resource

intensive. The Porter Stemming algorithm was devised by Martin Porter,

based on the idea that word suffixes are mostly combinations of smaller and

simpler suffixes. This means that a set of suffix replacement rules can be

26 CHAPTER 2. BACKGROUND

devised and applied to achieve the desired result. The Porter Stemming

algorithm is composed of five steps, in each of which transformation rules

are pattern matched to the input word. On successful pattern matches, the

transformation rule will be applied to remove parts of the stem, before passing

the result to the next step for further stem removal.

Without the use of a stem dictionary, Porter noted that: [Por80]

• The suffixes are stripped simply to improve IR performance, not as an

exercise in linguistics.

• The correctness of stemming using suffix-stripping rules will be signifi-

cantly less than perfect. For example, if “sand” and “sander” are both

converted to the same stem of “sand”, then both “wand” and “wander”

will likely be stemmed to “wand”, but this would be incorrect. The “-

er” in “wander” had been mistreated as a removable suffix when it is

actually part of the stem. If more rules were added as special cases

were encountered, the rule set will eventually reach a stage where per-

formance improvements in one area results in degradation elsewhere,

and the system will have become more complex than necessary.

Despite the minor imperfections, Porter’s empirical results demonstrated

that the simple algorithm performed no worse than the elaborate systems

of its time. Over twenty years since its inception, the Porter Stemming al-

gorithm has gained popular usage in the IR literature, and is widely used as

the de facto standard stemmer. The original paper, as well as the author’s

own implementation of the algorithm, can be found at:

http://www.tartarus.org/~martin/PorterStemmer/

2.5. COGNITIVE FILTERING 27

2.5.3 Feature Vector Representation

In the IF and IR literature, the Feature Vector / Vector Space Representation

of documents is commonly used. [She94, Sal83] Feature Vectors, or Document

Vectors, are used represent documents, where each Feature Dimension, or

Attribute, contains the frequency of some unique word stem. As an example,

let the Feature Dimensions be:

(australia, bush, blair, iraq, weapons)

Consider example phrase 1:

“Bush and Tony Blair have discussed war on Iraq”

This would have a Feature Vector of

(0, 1, 1, 1, 0)

Consider example phrase 2:

“Bush visited Australia to discuss free trade between Australia and

the US”

This would yield a Feature Vector of

(2, 1, 0, 0, 0)

28 CHAPTER 2. BACKGROUND

The example above used an extremely small set of Feature Dimensions. In

common English, Feature Vectors may require over tens of thousands of

dimensions to cover commonly used English words. Such high dimensions

present high computation costs for Cognitive Filtering, and it is desirable to

reduce the size to a feasible number. [YP97]

The Vector Space Representation of documents disregards the relative posi-

tions of words within a document, as IR literature claims that these temporal

properties of documents are of minor importance for the purpose of Text

Categorisation. [Joa98]

Normalisation of Feature Vectors to unit length is commonly used to abstract

the absolute size of documents. Using the example Stem Feature set from

above, consider the following two Feature Vectors:

A: (0, 20, 20, 0, 0)

B: (1, 1, 0, 0, 0)

Observe that article A has a total of 40 words, while B has only 2. Using a

distance measure such as the Euclidean Distance function, it would appear

that the two topics are dissimilar, when in fact both 50% of both articles

are about “Bush,” the second Feature Dimension. On the other hand, the

normalised vectors would reduce, if not eliminate, the effect of absolute doc-

ument sizes:

A’: (0, 0.5, 0.5, 0, 0)

B’: (0.5, 0.5, 0, 0, 0)

2.5. COGNITIVE FILTERING 29

The two vectors A’ and B’ are now identical in the Feature Dimension rep-

resenting “Bush.”

2.5.4 TFIDF Vector Scaling

Another popular vector transformation algorithm is the Term Frequency In-

verse Document Frequency (TFIDF), which is applied prior to normalisation.

This algorithm claims that common words are not as useful in classifying doc-

uments as uncommon words. By collecting word occurrence statistics over a

large corpus (training data), prior probabilities of each word occurrence can

be computed. Then, for each Document Vector to be classified, the occur-

rence of each word (Term Frequency) is multiplied by the inverse of its prior

probability, so that those higher-than-expected word occurrences will be ac-

centuated in the Document Vector. Several variants of the TFIDF equation

exist, and the one tested in the system is of the following form:

TFIDFi = TFi log(
N

DFi

)

where TFi is the term frequency of the ith word stem in a document. N
DFi

is

the inverse of the prior probability of occurrence of the ith word stem, where

N is the number of documents in the training corpus, and DF is the number

of documents in which the ith word stem occurs in the training corpus.

It is often acknowledged in the IR literature that TFIDF improves classifier

performance. [Joa98] However, without assuming the claim that accentu-

ating uncommon words improves performance, tests will be conducted to

empirically verify the usefulness of TFIDF.

30 CHAPTER 2. BACKGROUND

2.6 Machine Learning Algorithms

Machine Learning is an active research area of AI where patterns in data

are algorithmically mined. In application to the CNA, Machine Learning

algorithms will be applied to learn topics of interest to the user, so that

uninteresting articles encountered in the future can be automatically filtered.

The six algorithms to be evaluated in this thesis will be described in this

section, ranging from toy classifiers like ZeroR and OneR, to well regarded

classifiers such as the Näıve Bayesian Classifier, Support Vector Machine,

J4.8 (C4.5 variant) and k-Nearest Neighbour.

2.6.1 ZeroR

ZeroR is the most näıve classifier tested. It is a majority predictor, as it

always predicts the majority class of training data. For example, if the ma-

jority of training data were positive examples, then ZeroR will always predict

a positive score, regardless of the input.

This näıve, and arguably useless, classifier is included to serve as a bottom

line benchmark. If some classifier performed worse than ZeroR, it would

signal serious errors such as over-fitting, or that the classifier in question is

not worth using at all.

2.6.2 OneR

OneR is another classifier serving as a bottom line performance benchmark.

Given the training set of Feature Vectors, OneR will pick just one of possibly

thousands of Feature Dimensions as the sole judging criterion. In the train-

2.6. MACHINE LEARNING ALGORITHMS 31

ing phase, the training data will be split into a positive (interesting) and a

negative (uninteresting) set, and a threshold value will be computed for each

Feature Dimension so as to minimise prediction error on the training data,

based on the single feature. The Feature Dimension with the least number

of prediction errors will then be used as the sole prediction attribute.

2.6.3 Näıve Bayesian Classifier

The Näıve Bayesian Classifier is based on Baye’s Formula for Conditional

Probability:

P (A|B) =
P (A)P (B|A)

P (B)

This states that the probability of A occurring given B has occurred is equal

to the probability of A and B occurring simultaneously, divided by the prob-

ability of B occurring. When applied to Text Categorisation, the conditional

probabilities of an article being classified as HIT (interesting) or MISS (unin-

teresting) are computed for each Feature Dimension, i.e. the probability of

an article being a HIT or MISS given the word frequencies of each dimension.

When a new article is encountered, each Feature Dimension (i.e., unique

word stem) will be examined in turn, and the probability of that article be-

ing a HIT and a MISS will be computed based on its word frequency. Two

total probabilities, one for each of the HIT and MISS classes, will be deduced

by multiplying together the individual probabilities of each of their respec-

tive Feature Dimensions. The class with the higher probability will be the

outcome of the prediction.

32 CHAPTER 2. BACKGROUND

The classifier is Näıve in that words from the Feature Dimensions are as-

sumed independent, i.e., the conditional probability of a word occurrence

given a class is assumed independent from the conditional probabilities of

other words in the category. [YL99] An example to illustrate the näıveness

of this assumption is as follows: The words “September” and “Eleventh” have

very little meaning by themselves, but together they have a very specific ref-

erence to the terrorist attacks on the World Trade Centre in New York on

September 11th 2001. The Näıve Bayesian Classifier however, would treat

the two words as if they had no mutual dependence.

2.6.4 Support Vector Machines

Figure 2.3: SVM - Non Optimal Decision Surface (from [YL99])

The Support Vector Machine was introduced by Vapnik in 1995 for solv-

ing two class problems, by finding the optimal decision hyperplane. [Vap95,

YL99]

2.6. MACHINE LEARNING ALGORITHMS 33

Figure 2.4: SVM - Optimal Decision Surface (from [YL99])

Given a set of training vectors representing documents, the optimal hyper-

plane is defined to be the one that maximises the margin between the two

classes, as illustrated by Figures 2.3 and 2.4 with a simplistic two-dimensional

example. Despite the fact that both decision surfaces, the solid lines, sep-

arate the two classes without any misclassifications, the one in 2.4 had a

much wider margin than 2.3. This idea can be generalised to high dimen-

sional spaces for Text Categorisation by using the Structured Risk Minimi-

sation algorithm [Vap95] find the ‘best’ decision hyperplane separating the

two classes.

Unlike the k-NN and Näıve Bayes algorithms, where every point in the train-

ing form some part of the derived model, only points on the margin of the

decision surface, called ‘support vectors’, are significant in describing the de-

cision surface. These points are those touching the dashed lines in Figure

2.4. With the decision surface determined by solely by these support vec-

tors, classifications are performed without regard to all other points in the

34 CHAPTER 2. BACKGROUND

training set, leading to significant performance advantage for the SVM. It is

worth noting that SVM is often regarded as the best performing classifier in

the literature, and this claim shall be verified in Chapter 5.

2.6.5 J4.8 Classifier

J4.8 is an implementation of the C4.5 Decision Tree classifier by Quilan,

who extended his previous ID3 algorithm to take into account for unavailable

values, continuous attribute value ranges, pruning of Decision Trees and rule

derivation etc. Each node of a Decision Tree represents a decision based on

a certain attribute of the Feature Vector, and the node branches to children

nodes based on the value of the attribute. When given a new instance to

classify, the tree is traversed from the root node downwards until reaching a

leaf node, which represents a classification. A toy Decision Tree is shown in

Figure 2.5.

Frequency of word “computer”

< 0.2 >= 0.2

Freq of word “network”

< 0.1 >= 0.1

UNINTERESTING

UNINTERESTING INTERESTINGINTERESTING

Figure 2.5: A Simple Decision Tree

The C4.5 algorithm can handle three types of attribute testing: [Qui93]

• Standard Discrete Attribute - The standard test on discrete attributes,

with one outcome and branch for each possible value of each attribute.

2.6. MACHINE LEARNING ALGORITHMS 35

• Complex Discrete Attribute - A more complex test, also based on dis-

crete attributes, in which the possible values are allocated to a variable

number of groups, with one outcome for each group rather than each

value.

• Continuous Attributes - If attribute A has continuous numeric values,

a binary test, with outcomes A < Z and A ≥ Z, can be performed by

comparing the value of A against some threshold value Z.

Since the Feature Vectors used in this thesis are normalised to unit vectors,

which have continuous numeric values, the third type of testing is used. The

chosen threshold for each decision node must maximise performance, which

can be deterministically calculated with a simple method: Given m vectors,

sort them by their values in the attribute A being considered. Although

having continuous numeric values means that there will be infinite number

of equally optimal thresholds, on of these m values of attribute A must also

be one of the optimal candidates. Therefore all m possible thresholds can be

enumerated to find the optimal threshold. Using memoisation, the process

can be performed in one pass through the m sorted values, by updating the

distributions to the left and right of the threshold on the fly. [Qui93]

In order to explain how the most ‘useful’ attributes are identified by the

algorithm, it is necessary to define Entropy, Information Gain and Gain

Ratio.

Let each article be represented by a Feature Vector of i dimensions. Let S

be the full training set, and let p+ and p− be the proportion of interesting

and uninteresting articles in S respectively. The Entropy of S is defined as:

36 CHAPTER 2. BACKGROUND

Entropy(S) = −(p+) log2(p+) − (p−) log2(p−)

This measures gives a measure of the impurity of S. The Information Gain

from splitting the set S using Feature Dimension i is then given by:

InformationGain(S, i) = Entropy(S) −
∑ |Sv|

|S|
Entropy(Sv)

where Sv are the subsets of S containing vectors with values within certain

ranges in Feature Dimension i. Consider this example: Since the Feature

Vectors represent normalised word frequencies (continuous numeric values),

a numeric threshold will be chosen to split S into two Sv subsets, the first

being the set of vectors with values less than the threshold in dimension i,

and the other being the set of vectors with values greater than or equal to

the threshold.

C4.5’s predecessor, the ID3 algorithm, uses the Information Gain criterion

to determine the best attributes for classification. However, the author ob-

served that the Information Gain suffered a serious deficiency: Information

Gain biases in favour of tests with many outcomes. Although this is not as

apparent in the continuous numeric attribute case, since there are only two

outcomes from each decision node, this bias was rectified in the Gain Ratio

criterion, defined by:

GainRatio(S, i) =
InformationGain(S, i)

SplitInfo(S, i)

2.6. MACHINE LEARNING ALGORITHMS 37

where

SplitInfo(S, i) = −
n

∑

j=1

|Sj|

|S|
log2(

|Sj|

|S|
)

and j iterates through the n possible outcomes for attribute i, forming a

subset Sj of vectors with equal values in attribute i. In application to con-

tinuous numeric attributes, n would be set to 2, since the set S is split into

two subsets using a numeric threshold at each decision node.

In building the Decision Tree, the attribute with the highest Gain Ratio

will be used as the root of the tree. The process is then repeated using the

divide-and-conquer approach to generate the remaining sub-trees.

2.6.6 k-Nearest Neighbour

The k-Nearest Neighbour classification has been studied intensively in the

field of Pattern Recognition. It an Instance-Based Learner, which classifies

unseen cases by recalling similar remembered cases. The algorithm itself is

trivial: Given an unlabelled item, use some distance metric to find the k

nearest neighbours in the labelled training set, and label the new item as the

majority class of the k nearest neighbours.

The distance metric most commonly used is the Euclidean distance, which

given two vectors A and B both of dimension N , the distance is given by

N
∑

i=1

√

(Ai − Bi)2

38 CHAPTER 2. BACKGROUND

where Ai and Bi are the ith dimensions of vectors A and B.

Another commonly used distance metric is the cosine angle vector similarity

- given two normalised unit vectors, the cosine of the angle is simply the

dot product of the two vectors. This results in a numeric value for similarity

between -1 and 1, where an extreme value of 1 would mean that the two

vectors are identical. A value of -1 would mean that the vectors are 180

degrees apart, i.e. have no similarities at all.

In binary classification, where each item is classified as either a HIT (interest-

ing) or a MISS (uninteresting), k can be set to a odd number so that no ties

are possible when determining the majority class of the k nearest neighbours.

2.7. STATISTICAL TECHNIQUES 39

2.7 Statistical Techniques

For comparisons between classifiers to be made, rigorous statistical testing

is required. A common practice in the literature is to perform 10 runs of

ten-fold cross-validation for each classifier, and then use the Paired-Sample

t-test to compare the results. Both procedures are described in this section.

2.7.1 Cross-Validation

In theory, in order to deduce fair values for the accuracy and F1-Measure of a

classifier, two large sets of independent data should be used, one for training

and the other for testing. However, it is often difficult to obtain another

large set of labelled testing data on top of the training set, and therefore the

cross-validation method is commonly used to generate internal estimates of

the classifier performance using a single set of labelled data.

For a N-fold cross-validation, the labelled set is randomly partitioned into N

subsets of nearly if not equal sizes. N runs of testing are then executed, with

each run holding out one of the N subsets as testing data, while the other

N-1 subsets are used as training data. The average of the N runs is then used

as the output result.

The advantage of using N-fold cross-validation is that the random partition-

ing of eliminates any arbitrariness in the formation of training and testing

data, making the results more statistically reliable than using fixed sets of

training and test data. For this reason, the ten-fold cross-validation is per-

haps the most reliable and commonly used method for evaluating classifiers

in the literature.

40 CHAPTER 2. BACKGROUND

2.7.2 Paired-Sample t-test

The ten-fold cross-validation testing is used to evaluate the performance of

a classifier, but another statistical technique is required to compare classi-

fiers to determine if one significantly outperformed the other. Suppose that

ten runs of ten-fold cross-validation were performed for two different classi-

fiers. Comparing the raw average performance of the two classifiers would

be statistically unacceptable, since the statistical variations would not have

been taken into account. However, comparing the standard deviations of the

two classifiers could be just as unfruitful, since the performance difference

between runs may dominate the performance difference between classifiers.

In the Paired-Sample t-test, both classifiers are subjected to same series of

tests, and the difference between the classifiers’ performances in each of the

individual tests are used to compute a mean and standard deviation.

The t-test can then be used to determine whether the performance difference

is significantly different from zero. A P-Value, representing the probabil-

ity of the two classifiers being indifferent in performance, will be calculated

from the difference values using the t-distribution. If the P-Value is below a

desired significance threshold, then the test would conclude that one classi-

fier has outperformed another. Otherwise, the two classifiers are considered

statistically indifferent/equivalent in performance.

For the purpose of comparing two classifiers, ten runs of ten-fold cross-

validation will be performed for each classifier. Random seeds will be used to

ensure that the random partitioning is different between runs, but kept con-

sistent within each run for both classifiers. This would subject both classifiers

to the same series of tests as required by this statistical method.

2.8. RELATED WORKS 41

2.8 Related Works

Resnick et. al. developed the GroupLens open architecture [RIS+94] which

uses the Collaborative Filtering approach to filter USENET newsgroups.

News reader clients compatible with the architecture display articles to users

along with their customised predicted scores, and allows user feedback to

be gathered at a central rating server. The server uses the Correlation ap-

proach to make predictions, using the heuristic that people who agreed in

their scores in the past are likely to agree again.

PHOAKS is another Collaborative Filtering system built around USENET

newsgroups, but instead of recommending articles, the system recognises and

tallies web URLs mentioned in newsgroup articles to recommend popular

websites. [THA+97]

In [She94], Sheth developed Newt as a collection of agents using the author’s

proposed keyword based filtering algorithm to personalise USENET news-

group filtering. The GUI displays multiple Information Filtering Agents,

with each specialising in a different news topic. The agent system supple-

ments manual browsing of news, rather than being a complete environment.

The article being displayed can be scored by giving a positive or negative

feedback to one or more of the agents. For example, if the current article be-

ing viewd by the user is an interesting one about sports, the user would click

the “+” button on the agent for sports. A power user can also examine the

internal state of each agent to edit behaviour configurations. After sufficient

training, the user would click on a specific agent’s icon to read the articles

retried by that specialist agent.

42 CHAPTER 2. BACKGROUND

The Newsweeder system in [Lan95] is also a USENET agent, allowing users

to access newsgroups through a web interface. Initially, the user reads and

actively scores in existing newsgroups, from which user preference is learned.

After some training, the user can then access a virtual newsgroup, which is

a collection of interesting articles extracted from real newsgroups.

[PS96] presents a Learning Personal Agent which scouts sources on the WWW

for conferences and Request For Proposals that fit the research interests of

the user. The architecture splits the task of polling USENET newsgroups

and learning user preference using two separate agents, utilising a defined

communication protocol for article exchange between the two. Two predic-

tion engines were tested for the system: Cluster Mean Classification using

the cosine angle distance metric, and a Neural Network. However, thorough

development and testing was not evident in this research.

The Conversational News Agent being developed for this thesis is different

from the existing agents in the following regards:

• The agent is a complete news delivery environment, rather than a sup-

plementary component.

• News articles are delivered instead of newsgroup posts.

• Implicit scoring is used to reduce user burden.

• A conversational interface is used, allowing news articles to be delivered

in conversational segments rather than on-screen text dumps.

• Voice-enabled interaction is supported.

Chapter 3

System Framework

3.1 Chapter Overview

This chapter will describe the framework designed for the implementation of

the CNA. First, the general requirements of the system will be summarised,

followed by a high-level block diagram illustrating the interaction between

system components. After the high-level overviews, more specific functional

requirements will then be presented, followed by a set of Data Flow Diagrams

showing the detailed internal data processing of various components.

43

44 CHAPTER 3. SYSTEM FRAMEWORK

3.2 General Requirements

• Support multiple user profiles.

• Use CNN.com as the news source, since it is a well respected news

provider, with topics covering World News, Weather, Business, Sports,

Politics and Technology etc. The broad coverage makes a single news

provider sufficient for the desired application.

• Support conversational voice interaction with user, to let users under-

take a relaxed semi-active role in receiving news.

• Allow latest headlines to be cycled through when the user has no spe-

cific news requests.

• Allow searching of specific topics when the user has specific news re-

quests.

• Underlying prediction engine filters uninteresting articles to enhance

the end user experience.

3.3 System Overview

The high-level block diagram of the system components is shown in Figure

3.1 The user interacts with the scripted Probot agent, which supports a text-

based interface, as well as an animated face called “Sophie”, which supports

voice recognition and synthesis. Beneath the front-end lies the CNAClient,

which accesses the headline database compiled by the CNAServer and fetches

news articles from the news source.

3.4. FUNCTIONAL REQUIREMENTS 45

User
Probot
Agent

CNA
Client

CNA
Server

News
Source
(CNN)

Figure 3.1: Overview of System

3.4 Functional Requirements

Having divided the system into manageable components, the specific func-

tional requirements of each component is presented in this section. These

specific functions, when integrated, allows the desired system to be achieved

in a logical divide and conquer engineering approach.

3.4.1 CNAServer

• Extract headlines and article links from CNN

• Maintain local database of recent headlines

• Extract text-only articles from CNN

46 CHAPTER 3. SYSTEM FRAMEWORK

• Cache articles for mass retrieval by CNAClient

3.4.2 CNAClient

• Well defined I/O interface to accommodate Probot front-end.

• Update headlines and article caches from CNAServer

• Support multiple user profiles

• Allow transparent access to CNN’s search engine

• Allow user to cycle through latest headlines

• Extract text-only articles from CNN

• Utilise prediction algorithm to filter uninteresting articles using each

user’s historic profile

3.4.3 Probot Front-End

• Serve as the Natural Language interface between user and the CNA-

Client

• Allow user to access news in a conversational fashion

• Utilise “Sophie” to support voice interaction, which integrates Voice

Recognition and Voice Synthesis sub-systems.

3.5. DATA FLOW DIAGRAMS 47

3.5 Data Flow Diagrams

The Data Flow Diagram (DFD) is a software engineering tool by which data

processing functions of the system can be illustrated. In this section, DFDs

of the CNA system is presented, starting with the Context Level Diagram

summarising the high-level interaction between the system and external en-

terties, namely the user and the news source. The Level 0 DFD shows the

overall interaction between components within the system, and the more

sophisticated components, namely the CNAClient and the CNAServer, will

expanded further into Level 1 and 2 diagrams to demonstrate the internal

operations. Having the system functions modelled with Data Flow Diagrams,

implementation can then be carried out in an organised fashion.

News
Source

End
User

CNA
System

News Request

News Response

Headlines Request

Headlines

Search Request

Search Results

Conversations

Context Level Diagram

Figure 3.2: Data Flow Diagram - Context Level Diagram

48 CHAPTER 3. SYSTEM FRAMEWORK

Probot
Agent

1
Conversations

CNAClient
2

U
se

r
C

om
m

an
ds

In
te

re
st

in
g

H
ea

dl
in

es
an

d
A

rt
ic

le
s

N
ew

s
/ S

ea
rc

h
R

eq
ue

st

N
ew

s
/ S

ea
rc

h
R

es
po

ns
e

Headline / News
Request

Headline / News
Response

Web Server
3

Headline
Database

Articles
Cache

Headlines Arti
cle

s

Headlines / News
Request

Headlines / News
Response

CNAServer
4

Hea
dlin

es Articles

Note: Processes 2 and 4 can both independently send and receive News
Requests/Responses to and from the external news source, but for clarity, the
news request/response flows had been merged with other flows in this diagram.
In addition, note that the CNAClient in process 2 can fetch news from through
Process 3 from the CNAServer’s articles cache, as well as directly from the
news source.

Level 0 Diagram

Figure 3.3: Data Flow Diagram - Level 0 Diagram

3.5. DATA FLOW DIAGRAMS 49

User
Commands

Interesting Headlines
and Articles

H
ea

dl
in

e
/ S

ea
rc

h
R

eq
ue

st

H
ea

dl
in

e
/ S

ea
rc

h
R

es
po

ns
e

Headlines Request

Headline Response

Headline
DB Updater

2.5

Headline
Database

News Request

News Response

Level 1 Diagram - Process 2 - CNAClient

News
Finder

2.2

N
ew

 D
at

ab
as

e

O
ld

 D
at

ab
as

e

Headlines

Search Request

Search Results

U
nc

ac
he

d
H

ea
dl

in
e

U
R

L
S

Update Headlines Request

News Request

News Article
Article
Fetcher

2.3

N
ew

s A
rticle

A
dd

/C
ha

ng
e

Pr
of

ile
Pr

ed
ic

te
d

Sc
or

es

U
se

r
Sc

or
es

Prediction
Engine

2.4

Command
Processor

2.1

Figure 3.4: Data Flow Diagram - Level 1 Diagram of CNAClient

50 CHAPTER 3. SYSTEM FRAMEWORK

Level 1 Diagram - Process 4 - CNAServer

N
ew

s
A

rt
ic

le
s

Headlines Request

Headlines

Headline
Fetcher

4.2

Headline
Database

N
ew

 D
at

ab
as

e

O
ld

 D
at

ab
as

e

U
pd

at
e

C
om

m
an

d

Uncached Headline URLS

Periodic
Timer

4.1

N
ew

s
R

eq
ue

st

N
ew

s
R

es
po

ns
e

Article
Fetcher

4.3

Articles
Cache

Note: The CNAServer is triggered periodically by the timer in Process 4.1

Figure 3.5: Data Flow Diagram - Level 1 Diagram of CNAServer

3.5. DATA FLOW DIAGRAMS 51

Level 2 Diagram - Process 2.4 - Prediction Engine

A
dd

/C
ha

ng
e

P
ro

fi
le

Pr
ed

ic
te

d
S

co
re

s

U
se

r
S

co
re

s

Prediction
Algorithm

2.4.4

User
Profiles

Profiles

F
ea

tu
re

V
ec

to
r

Feature
Vector

Generator
2.4.3

Selected
Stem

Features

Stem Features

W
or

d
S

te
m

L
is

t

Porter
Stemmer

2.4.2

Stop Word
Filter
2.4.1

News Article Filtered
Word List

Figure 3.6: Data Flow Diagram - Level 2 Diagram of CNAClient’s Prediction
Engine

Chapter 4

System Implementation

4.1 Chapter Overview

In this chapter, technical descriptions of the system implementation will be

presented, together with some design justifications made during the imple-

mentation process, when appropriate. The chapter begins with a discus-

sion of the hardware and software resources chosen for the system, and then

the implementation details of each of the three major software components,

CNAServer, CNAClient and the Probot script, will be described.

4.2 Resources

Feature Vector Representations of documents are high-dimensional in nature,

and thus require significant space and processing resources when prediction

algorithms are to be trained and executed. It would be desirable for the

client side software to run on a Portable Digital Assistant, but the resource

constraints on existing PDAs make this infeasible. However, if the intensive

52

4.2. RESOURCES 53

processing can be shifted off-PDA, then a portable CNA would be conceiv-

able. In fact, the Probot had already been ported to an iPaq handheld,

which is connected via a wireless network card to a PC that performs the

intensive processing. The implementation hardware and software platform

can therefore be targeted for the standard PC, and execution on the iPaq

handheld would be a free bonus.

Java was chosen as the software platform for the CNAClient and CNAServer,

primarily for its platform portability. The current PC version of Probot was

written for the Linux platform, and would thus require CNAClient to run

on Linux as well. However, if the Probot were ported to Windows in the

future, using the Java platform means that the CNAClient would be portable

without any code modifications. Further, if handheld hardware does reach a

stage where intensive processing can be carried out on-board, the CNAClient

should be portable to the handheld device with relative ease.

The total network bandwidth required by the CNAClient is quite significant

by today’s standards: Downloading the entire article cache would require

over 10MB of network traffic. However, the average size of pure-text articles

is only around 3KB, and since the content delivery bandwidth to the end

user is limited to the speed of human speech, only a few articles would be

needed before there are more than enough content to keep the user occupied.

Therefore the peak network bandwidth required by the CNAClient is not

very demanding, and a 56Kbps modem connection would suffice.

The benchmarking of Machine Learning algorithms in Chapter 5 was con-

ducted with a laboratory of 40 Pentium III-888MHz machines at the School

of Computer Science and Engineering at UNSW. Without running the ex-

periments in parallel, the experimental results would have been unattainable.

54 CHAPTER 4. SYSTEM IMPLEMENTATION

The final set of experiments leading to the results in Chapter 5 took three

days to complete on the 40 machines, without taking into account the many

series of initial testing undergone to refine the statistical reliability of testing

procedure.

4.3 CNAServer

4.3.1 CNAServer Overview

The main task of CNAServer is to extract headlines from CNN, and also to

cache articles for mass retrieval by the CNAClient. The CNN news source

does not provide direct access to their articles database, and therefore it is the

responsibility of the CNAServer to constantly monitor CNN’s website and

extract the latest headlines, as well as indexing them into a local headline

database. Further, since CNN does not provide direct access to their articles

in pure text form, the CNAServer must extract them from the marked up

webpages, and cache them for the CNAClient.

4.3.2 Command Line Arguments

The CNAServer is a non-persistent server process, which means is periodi-

cally instead of being a permanent server process. The command to execute

the CNAServer is as follows:

java CNAServer [ProxyURL ProxyPort]

ProxyURL and ProxyPort are the optional proxy server URL and port num-

ber respectively.

4.3. CNASERVER 55

Example Usage (No Proxies):

java CNAServer

Example Usage (With Proxy):

java CNAServer www-proxy.cse.unsw.edu.au 3128

4.3.3 CNN Headline Extractor

The role of the CNN Headline Extractor is to fetch the latest headlines from

CNN. Since CNN do not offer their headlines in a format that can easily

be parsed such as XML, the best available alternative is the CNN Desktop

Headlines web page at the following URL:

http://www.cnn.com/desktop/content.html

The CNN Desktop Headlines web page contains HTML patterns that allow

pure text headlines to be extracted. Documentation of the precise speci-

fication of the page format is not publicly available, therefore the parsing

process can at best be considered ad-hoc. Should CNN decide to alter the

page format, a new Headline Extractor will have to be devised.

4.3.4 Headline Database

The headline database maintains data about the latest headlines, includ-

ing the article link, category and time of publication. Unique IDs will also

56 CHAPTER 4. SYSTEM IMPLEMENTATION

be assigned to each story so that the CNAClient can avoid presenting the

user with duplicate stories. The database is stored a plain text file named

“headlines.db”, where each line in the file is tab-delimited with the data:

HeadlineID LinkURL Title ContentProvider Category Time

The headlines are sorted in chronological order, i.e., the most recent headline

will be at the end of the text file. The IDs of the articles are assigned

sequentially, so that the latest articles will have the highest numeric IDs.

Since the plain text database will be transferred to the CNAClient in its

entirety whenever the client updates the headlines, the file size need to be

restricted. It was observed over a month long period that CNN typically

publish 70 news articles daily. To maintain the database at a downloadable

size, the database was tuned to keep only the 3000 most recent headlines,

sufficient to cover a month’s worth of CNN headlines. With this upper bound,

the raw file size of the database is typically below 500KB, and therefore low

bandwidth client connections would be tolerable.

4.3.5 Article Caching

In the initial prototype of the system, excessive delay was observed in the

prediction engine of the CNAClient. The delay was attributed to the fact

that full text of articles must be fetched in order to execute the prediction

engine, and that many articles may be needed before a positive prediction

is made. If, for example, 10 articles were filtered as uninteresting before

encountering an interesting one, the client would have had to establish 10+1

TCP connections to the CNN website, and the time accumulated by TCP

handshakes and data transfer resulted in unacceptable wait times for the

4.3. CNASERVER 57

user. For this reason, article caching became a necessary function in ensuring

efficient system operation.

As with any network resource, the article links are occasionally incorrect

or unreachable when caching is attempted. It is therefore necessary to re-

attempt caching in subsequent sessions. However, if there were large numbers

of problematic links in the database, the caching mechanism will access the

CNN server excessively through regular request of large numbers of broken

articles. Such actions may possibly be interpreted as a Denial-of-Service

attack and may lead to IP banning, and thus the number of articles cached

per execution of the server is bounded by a system parameter. This number

was tuned so that the rate of caching exceeds the rate of headline publication,

with some margins for re-attempting previously unreachable links.

4.3.6 Deployment

The CNAServer was deployed on wagner.cse.unsw.edu.au to collect the

latest CNN headlines every 15 minutes, meaning the server is executed 4x24

= 48 times a day. The upper bound of caching rate was set to two articles per

execution, so that at most 96 articles are cached every day. This exceeds the

average headline publication rate of 70 per day, and gives sufficient margin

for re-attempting previously unreachable links as required by the caching

mechanism.

To serve the headline database and the cached articles to the CNAClient,

the files are made available through a web server at the following URLs:

Headline Database:

58 CHAPTER 4. SYSTEM IMPLEMENTATION

http://www.cse.unsw.edu.au/~johnlai/comp4910/headlines.db

Article Cache Directory:

http://www.cse.unsw.edu.au/~johnlai/comp4910/articles/

4.4 CNAClient

4.4.1 CNAClient Overview

The CNAClient is the most sophisticated component of the system imple-

menting facilities for updating, searching and presenting headlines. Further,

a prediction engine is used to filter articles that are unlikely of interest to

the user based on historic profile. The required operations are performed

through a strict set of input commands and output responses, which was

designed to accommodate the Probot front-end.

4.4.2 Command Line Arguments

The command to execute the CNAClient is as follows:

java CNAClient [ProxyURL ProxyPort]

ProxyURL and ProxyPort are the optional proxy server URL and port num-

ber respectively.

Example Usage (No Proxies):

4.4. CNACLIENT 59

java CNAClient

Example Usage (With Proxy):

java CNAClient www-proxy.cse.unsw.edu.au 3128

4.4.3 Input/Output Interface

INPUT SPECIFICATIONS

The full specification of input commands are presented in Table 4.1.

Operation Syntax

Specify Current User setuser USERNAME

Create New User adduser USERNAME

Fetch New Headlines updateheadlines

Cycle Through Headlines cycleheadlines

Continue Cycling Headlines blank line

Article Keyword Search search KEYWORDS

Continue Cycling Through Results blank line

Fetch Current Article fetchcurrent

Continue Reading Article blank line

Stop Reading Article back

Quit the Program quit

Table 4.1: Summary of CNAClient Commands

Notes:

• successful adduser USERNAME operation means that: USERNAME didn’t

already exist, a new profile for USERNAME was created and the current

user was set to USERNAME.

60 CHAPTER 4. SYSTEM IMPLEMENTATION

• When the cycleheadlines or search command is issued, subsequent

blank lines in the input may follow, meaning the user wishes to skip to

the next headline/result.

• When the fetchcurrent command is used, subsequent blank lines in

the input may follow, each meaning that the user wishes to read the

next paragraph. When the article is finished or when a back command

is issued, the program would take the user back to state prior to the

execution of the fetchcurrent command.

OUTPUT SPECIFICATIONS

For every operation, there will be at least one line of output to indicate the

success of the operations:

• true - The operation was completed successfully

• false - The operation failed. This could mean that the USERNAME

doesn’t exist, headline database server unreachable, no more articles

left or no more content exists, depending on the context.

Then at most one line will follow, which if the Probot interface is used, will

be displayed directly to the user. This could be a single headline or a single

paragraph of an article, depending on the context. The strict I/O interface

is necessary to simplify the integration process with the Probot front end.

4.4. CNACLIENT 61

4.4.4 CNN Text Extractor

For the purpose of content delivery to the user through a voice interface, the

CNN articles need to be in pure-text form. Further, the prediction engine

operates only on the text of articles. Unfortunately, like the headlines, the

CNN web site does not offer their content in a pure text format. Therefore

the CNN Text Extractor was written to process the source HTML of CNN

articles to filter out advertisements, photos and menu bars, returning only

the content of the article in pure text. This component software is also

utilised by the CNAServer’s caching mechanism to save processing times on

the client end when possible.

4.4.5 CNN Search

A system requirement is to allow keyword search of news articles. The CNN

Search utility was written as a component software to access CNN’s own

web search facility, submitting queries and extracting search results from the

HTML source. Again, without the specifications of the input/output format

to the CNN web search facility, this utility is based on patterns in the HTML

sources of the CNN web search, and may need revision if the existing format

is altered.

4.4.6 User Profiles

The system is required to support multiple user profiles, so that the predic-

tion engine can produce tailored results for each user of the system. Each

profile stores the IDs of articles already presented to the user, as well as the

62 CHAPTER 4. SYSTEM IMPLEMENTATION

score associated with each presented article, for the purpose of preference

prediction. Rather than explicitly asking the user to constantly assign scores

to articles, implicit scoring is used: articles that the user has accepted to

read are given a score of +1, and articles that the user has rejected are given

a score of -1. This frees the user from having to constantly assign explicit

scores while reading articles, which can be an annoying distraction.

When the user cycles through headlines, new articles will be passed to the

prediction engine in reverse chronological order (most recent first) until a

positive prediction is produced. That headline will then be presented to the

user, which in turn will be scored and added to the training data, when the

user decides to read or skip the article.

4.4.7 Weka

Weka is a collection of Machine Learning algorithms written in Java, and is

publicly available under the GNU licence at:

http://www.cs.waikato.ac.nz/ml/weka/index.html

The package includes implementations of popular classifiers such as the Sup-

port Vector Machine, Näıve Bayesian Classifier and k-Nearest Neighbour,

and will were benchmarked rigorously to find the best classifier for predict-

ing interesting articles. The experimental process is described in detail in

Chapter 5.

4.5. PROBOT 63

4.5 Probot

The Probot scripting agent is used as a front end to CNAClient, so that user

interaction can be made more informal through Natural Language dialogue,

instead of the rigid command syntax required by CNAClient.

The Probot Script will use four main contexts to model user conversations:

• IDLE - waiting for user to initiate system.

• IDENT - Identify new/existing user to create/load user profile.

• FIND - Find articles of interest to user. Has 2 sub-contexts, one of

which allows headlines to be cycled through, while the other allows

keyword searches to be performed.

• READ - Read article to user, prompting frequently to check whether

the article should continue to be read.

The Probot context transition diagram, used to implement the Probot scripts,

is presented in Figure 4.1.

64 CHAPTER 4. SYSTEM IMPLEMENTATION

Find
(Cycle

Headlines)

Idle
User

Identification
Entr y User is Ready

U
se

r
Id

en
tif

ie
d

Find
Headlines

Find
(Keyword
Search)

Read
Articles

K
ey

w
or

d
Se

ar
ch

R
eq

ue
st

Cycle
 H

ead
lin

es

Request

C
yc

le
 H

ea
dl

in
es

R
eq

ue
st

Found Article

Keyword Search
Request

Back Command

Found Artic
le

Back
 Command

Filter
Stack

Backup
Stack

E
xit R

eque st

K
eyw

ord Search R
equest

C
ycle H

eadlines R
equest

F
IL

T
E

R
S

N
O

R
M

A
L

 C
O

N
T

E
X

T
S

B
A

C
K

U
P

S

Probot Context Transition Diagram

Figure 4.1: Probot Context Transition Diagram

4.6. JAVA CNA SOURCE STRUCTURE 65

4.6 Java CNA Source Structure

This section lists the files in the Java source directories of CNAClient and

CNAServer, along with brief descriptions of their functionalities. This section

would be a useful guide to navigating the source code attached to this report.

Common CNA Files

These files/directories are common to both the CNAServer and Client:

• articles/

Articles cache directory

• CNNTextExtractor.java

Used to extract text content from CNN articles

• Headline.java

Represents a headline, including title, URL and date etc.

• HTMLConverter.java

Converts an HTML marked-up document to text

• headlines.db

Headline database file

• Proxy.java

Allows HTTP proxy to be set conveniently

66 CHAPTER 4. SYSTEM IMPLEMENTATION

CNAServer Files

These files/directories are specific to the CNAServer:

• CNAServer.java

The main code for the CNAServer

• CNNHeadlineExtractor.java

Used to extract latest headlines from CNN.com

• nextID.txt

Used to keep track of assigned unique IDs

CNAClient Files

These files/directories are specific to the CNAClient:

• CNAClient.java

The main code for the CNAClient

• headlineServer.url

Configuration file storing the URL of the CNAServer’s headline database

• cacheServer.url

Configuration file storing the URL of the article cache server

• stemfeatures.txt

List of selected word stems to be used as Feature Vector Dimensions.

• commonWords.txt

List of common words to be filtered by CommonWordsFilter class

4.6. JAVA CNA SOURCE STRUCTURE 67

• ArticleFetcher.java

Used to cache articles in the background

• CNNSearch.java

An interface to CNN.com’s search engine

• profiles/

Directory storing user profiles

• CommonWordsFilter.java

Used to convert sentences into word lists, while common words are

filtered

• Stemmer.java

Used to convert words to their stems

• FeatureExtractor.java

Used to count the word frequencies in a given article

• UserProfile.java

Abstract class defining the behaviour of a user profile

• UserProfileWeka.java

Instance of UserProfile using Weka package as the prediction engine.

• weka.jar

JAR archive of Weka package, which is used for prediction and exper-

iments

68 CHAPTER 4. SYSTEM IMPLEMENTATION

Experimental Files

These files are used in the experiments deriving classifier benchmarks and

selecting feature stems, and are not used in the main system:

• ARFFGenerator.java

Used to generate ARFF files from CNN articles and user scores

• MassStemmer.java

Used to collect all word stems in a set of articles

Miscellaneous Files

• CoTrainer.java

Implements the Co-Training algorithm proposed by [KM01], but the

benefits of this algorithm have yet to be rigorously verified, and thus

not used in the main system.

Chapter 5

Experiments

5.1 Chapter Overview

The aim of this section is to find the optimal classifier for use in the system

through rigorous statistical testing, and to verify various claims from the

Text Classification literature. More specifically, the following questions are

to be addressed:

• Which classifiers benefit from TFIDF vector scaling?

• Which of the Feature Selection Algorithms available in Weka allow

classifiers to perform optimally? The algorithms are {χ2, Document

Frequency (DF), Gain Ratio, Information Gain (IG), ZeroR}.

• What is the best size configuration for each classifier?

69

70 CHAPTER 5. EXPERIMENTS

A set of labelled data is required for use in the cross-validation experiments.

Although the Reuter’s corpus 1 is often used as the de facto standard data

set for IR experiments, it would be more appropriate to use news articles

from CNN.com, where the system actually sources its news. The author of

this thesis collected 1710 CNN articles, and manually labelled them as either

INTERESTING or UNINTERESTING according to his personal preferences. From

the text of those articles, 25769 unique word stems were extracted. Those

occurring in only one document were filtered, producing 14968 word stems

as the full Feature Stem set.

In any individual test, several variables need to be controlled:

• The classifier being used for prediction. (7 possibilities from 6 differ-

ent classifiers. The kNN algorithm was tested for kNN-1 and kNN-3

configurations.)

• The Feature Selection algorithm used to determine the Feature Dimen-

sions. (5 possibilities from the Weka package)

• The Feature Dimension size (10 chosen sizes: 32, 64, 96, 128, 256, 384,

512, 1024, 2048 and 4096)

• TFIDF scaling or standard normalisation of Document Vectors. (2

possibilities)

1There are many collections of Reuters newsire documents with hu-
man assigned category labels that are frequently used for testing in the
IR literature. One such collection, the Reuters-21578, is available at
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

5.2. TFIDF 71

Each combination of the four variables would result in a different experimen-

tal configuration. Ideally, each of the 7 × 5 × 10 × 2 = 700 configurations

would have ten rounds of ten-fold cross-validation conducted, but the time

required conduct the experiments would be intractable by projective esti-

mates. Therefore, the three questions posed would have to be addressed

sequentially.

5.2 TFIDF

Which classifiers would benefit from TFIDF?

The goal of this test is to determine whether TFIDF scaling of document Fea-

ture Vectors improve performance. Ten-fold cross-validation was performed

for each classifier under various feature selection algorithms and feature sizes,

with and without TFIDF. This means that each classifier would have had

5 × 10 = 50 ten-fold cross-validations conducted with TFIDF, and then an-

other 50 without TFIDF. The results are tabulated in Table 5.1, together

with P-Values from Paired-Sample t-tests to determine whether TFIDF has

significantly affected the performance.

Contrary to expectations, TFIDF scaling produced better results than with-

out TFIDF with only one classifier, the OneR. In fact, TFIDF has led to

significantly worse results in three of the remaining six classifiers. Therefore

TFIDF will only be used with OneR in future tests.

72 CHAPTER 5. EXPERIMENTS

Classifier No TFIDF With TFIDF t-test Conclusion
(Mean Acc. and F-1) (Mean Acc. and F-1) (P-Value)

J48 64.9% 63.8% 0.000 �
N. Bayes 66.9% 65.2% 0.000 �

OneR 49.9% 50.3% 0.002 �
SMO 67.5% 66.4% 0.000 �
ZeroR 34.1% 34.1% 1.000 ˜
kNN1 65.6% 65.8% 0.222 ˜
kNN3 61.4% 61.3% 0.541 ˜

Table 5.1: Performance Enhancements with TFIDF Vector Scaling
� means TFIDF performed significantly worse (P ≤ 0.01)
� means TFIDF performed significantly better (P ≤ 0.01)

˜means TFIDF showed insignificant performance difference (P > 0.01)

5.3 Stem Feature and Size Selection

[YP97] showed that by applying effective Feature Selection algorithms, the

Stem Feature Dimensions can be vastly reduced to improve speed perfor-

mance, and surprisingly, prediction accuracy as well. To decide on the most

suitable Feature Selection algorithm and Feature Size for each classifier, two

series of tests were conducted: the first to distinguish the best feature selec-

tion algorithms, and the second to find optimal feature sizes.

5.3.1 Feature Selection Algorithm

Which feature selection algorithms allow classifiers to perform

best?

Ten-fold cross-validation tests were performed for every classifier under every

feature selection algorithm, with feature sizes of 32, 64, 96, 128, 256, 384, 512,

1024, 2048 and 4096, with and without TFIDF. Each derived accuracy and

5.3. STEM FEATURE AND SIZE SELECTION 73

F1-Measure pair was averaged to derive a single metric, and Paired-Sample

t-tests were then used to compare the performance difference between every

pair of Feature Selection algorithms. The results are summarised in Table

5.2 and Table 5.3.

χ2 DF GainRatio IG OneR
χ2 1.0000 0.0000 0.0000 0.9785 0.5239
DF 0.0000 1.0000 0.4829 0.0000 0.0002

GainRatio 0.0000 0.4829 1.0000 0.0001 0.0000
IG 0.9785 0.0000 0.0001 1.0000 0.5850

OneR 0.5239 0.0002 0.0000 0.5850 1.0000

Table 5.2: P-Values for Paired-Sample t-test of Feature Selection Algorithms

χ2 DF GainRatio IG OneR
χ2 ˜ � � ˜ ˜
DF � ˜ ˜ � �

GainRatio � ˜ ˜ � �
IG ˜ � � ˜ ˜

OneR ˜ � � ˜ ˜

Table 5.3: Comparison of Feature Selection Algorithms using Paired-Sample
t-test

� means the algorithm in this row was significantly worse than the one in this column (P ≤ 0.01)
� means the algorithm in this row was significantly better than the one in this column (P ≤ 0.01)

˜means the algorithm in this row was indifferent to the one in this column (P > 0.01)

This can be summarised as

{χ2, IG, OneR} � {DF, GainRatio}

The result of those feature selection algorithms tested by [YP97] agrees

with the results presented here, except that the Document Frequency (DF)

method performed worse than χ2 and IG. DF assumes that rare words are

not useful in Text Classification, which conflicts with many popular beliefs in

74 CHAPTER 5. EXPERIMENTS

the literature, and is often regarded as an ad-hoc approach. However, [YP97]

presented empirical results to suggest that DF has strong correlations with

IG and χ2 under kNN and the author’s own Linear Least Squares Fit algo-

rithm. The statistical results presented here, based on more classifiers and

more rigorous statistical testing (Paired-Sample t-test on ten-fold cross val-

idated results) would disagree with its claim, and has confirmed that DF

performs worse than IG and χ2.

5.3.2 Optimal Feature Size

What is the best size configuration for each classifier?

The first test showed that χ2, IG and OneR were the best selection algo-

rithms, and that their performance differences were insignificant across clas-

sifiers. The second part of the feature selection test seeks to determine the

optimal feature size for each classifier. The desirable Feature Dimension size

should be as small as possible to maximise system speed performance, while

maintaining almost optimal prediction capability.

For each classifier under each size configuration, ten-fold cross-validated re-

sults under each of the best statistically indistinguishable selection algorithms

(χ2, IG and OneR) were averaged. From the averages, the optimal size con-

figuration was determined. Paired-Sample t-tests were then used test the

significance of the difference between the optimal configuration and each size

configuration, so that the feature size can be minimised to improve run-

time performance, in situations where filtering performance will not degrade

significantly. Paired-Sample t-tests were used to test the significance of per-

formance differences, and the P-Values are presented in Table 5.4.

5.3. STEM FEATURE AND SIZE SELECTION 75

In each column, the entry containing 1.00 indicate the optimal stem feature

size for the classifier in question. For example, 2048 is the optimal feature

size for the J4.8 classifier. Each P-Value entry represents the probability of

the given classifier performing equivalent to the optimal configuration under

the given size configuration. For example, the P-Value of the J4.8 classifier

with stem size of 1024 is 0.84. This means that there is a high probability of

0.84 that the classifier performs just as well with 1024 stem features as the

optimal configuration with 2048 features. On the other hand, J4.8 with only

16 features has a P-Value of 0.02, suggesting very significant performance

degradation.

Features J4.8 N. Bayes OneR SMO ZeroR kNN1 kNN3

16 0.02 0.01 1.00 0.03 1.00 0.07 0.40
32 0.16 0.05 0.27 0.07 1.00 0.29 0.43
64 0.13 0.06 0.18 0.02 1.00 0.14 0.99
96 0.31 0.03 0.18 0.04 1.00 0.46 0.88
128 0.28 0.00 0.18 0.02 1.00 0.28 0.98
256 0.51 0.36 0.18 0.05 1.00 0.54 1.00
384 0.47 0.27 0.18 0.03 1.00 1.00 0.02
512 0.45 0.14 0.18 0.00 1.00 0.44 0.04
1024 0.84 1.00 0.18 0.29 1.00 0.17 0.11
2048 1.00 0.32 0.18 1.00 1.00 0.01 0.08
4096 0.74 0.24 0.13 0.13 1.00 0.01 0.01

Table 5.4: P-Values of Paired-Sample t-tests Between Optimal- and Various
Sized Configurations

Although the three best feature selection algorithms were insignificant in

their performance differences, one algorithm must be ultimately chosen for

each classifier. Hence, for each classifier under its optimal feature size, the

selection algorithm with the highest absolute performance was chosen. The

resulting optimal combinations of TFIDF, feature selection algorithm and

feature size is presented in Table 5.5. This will allow comparisons to be

76 CHAPTER 5. EXPERIMENTS

made between each classifier under its respective optimal configuration in

the next section.

Classifier TFIDF Feature Selection Feature Size
J4.8 No IG 2048

N. Bayes No χ2 1024
OneR Yes IG 16
SMO No IG 2048
ZeroR No Any 16
kNN1 No χ2 384
kNN3 No IG 256

Table 5.5: Optimal Configurations for Each Classifier

5.4 Classifier Benchmark

Having tuned each classifier for optimal performance, ten rounds of ten-

fold cross-validation were conducted to benchmark their performances. The

summary of result is presented first in Table 5.6.

Classifier Accuracy (Std. Dev.) F-1 (Std. Dev.) Avg. Acc. & F-1

SMO 85.0% (0.4%) 75.0% (0.5%) 80.0%
N. Bayes 77.7% (0.2%) 70.8% (0.2%) 74.2%

J4.8 75.8% (0.5%) 61.6% (0.8%) 68.7%
kNN1 76.5% (0.4%) 60.3% (0.9%) 68.4%
kNN3 76.3% (0.6%) 58.8% (1.2%) 67.6%
OneR 68.7% (0.4%) 59.5% (1.3%) 64.1%
ZeroR 68.2% (0.0%) 0.0% (0.0%) 34.1%

Table 5.6: Classifier Benchmark Over 10 Runs of Ten-Fold Cross-Validation.

Based on Accuracy in Table 5.7, the classifiers are ranked as follows:

SVM � Näıve Bayes � {kNN-1, kNN-3, J4.8} � OneR � ZeroR

5.4. CLASSIFIER BENCHMARK 77

Classifier SMO N. Bayes kNN1 kNN3 J4.8 OneR ZeroR

SMO ˜ � � � � � �
N. Bayes � ˜ � � � � �

kNN1 � � ˜ ˜ � � �
kNN3 � � ˜ ˜ ˜ � �
J4.8 � � � ˜ ˜ � �

OneR � � � � � ˜ �
ZeroR � � � � � � ˜

Table 5.7: Classifier Accuracy Comparison Using Paired-Sample t-test
� means the classifier in this row was significantly worse than the one in this column (P ≤ 0.01)
� means the classifier in this row was significantly better than the one in this column (P ≤ 0.01)

˜means the classifier in this row was indifferent to the one in this column (P > 0.01)

Classifier SMO N. Bayes J4.8 kNN1 OneR kNN3 ZeroR

SMO ˜ � � � � � �
N. Bayes � ˜ � � � � �

J4.8 � � ˜ ˜ � � �
kNN1 � � ˜ ˜ ˜ � �
OneR � � � ˜ ˜ ˜ �
kNN3 � � � � ˜ ˜ �
ZeroR � � � � � � ˜

Table 5.8: Classifier F1-Measure Comparison Using Paired-Sample t-test
� means the classifier in this row was significantly worse than the one in this column (P ≤ 0.01)
� means the classifier in this row was significantly better than the one in this column (P ≤ 0.01)

˜means the classifier in this row was indifferent to the one in this column (P > 0.01)

Based on F1-Measures in Table 5.8, the classifiers are ranked as follows:

SVM � Näıve Bayes � {J4.8, kNN-1, OneR, kNN-3} � ZeroR

The results showed that SMO (SVM) performed significantly better than

every other classifier, producing 85% accuracy and 75% F1-Measure, and

will therefore be chosen as the prediction algorithm for the system.

The empirical data from this experiment disagrees with those presented in

[YL99], where kNN was a top performer along with SVM, both of which

78 CHAPTER 5. EXPERIMENTS

consistently outperformed Näıve Bayes, the worst performer in every test

conducted.

Chapter 6

Summation

6.1 Conclusion

The design and implementation of the Conversational News Agent had been

presented through this thesis report.

The end system has demonstrated that useful applications with Natural Lan-

guage interfaces can be developed effectively, using shallow parsing techniques

and scripted responses, without using complex Natural Language Processing

engines that often fail to deliver the performance expected of Conversational

Agents.

The Vector Space Representation of documents have been used to allow Ma-

chine Learning algorithms to learn user interests in the AI field of Text Cate-

gorisation, and rigorous statistical testing have been applied to verify several

claims in the literature.

The TFIDF vector scaling ‘tweak’ is often assumed in the literature to offer

prediction performance improvements, but experimental results have sug-

79

80 CHAPTER 6. SUMMATION

gested otherwise. In fact, TFIDF have demonstrated insignificant perfor-

mance improvements, if not worse, in all but one classifier (OneR) tested.

Feature Selection algorithms allow aggressive speed improvements for Ma-

chine Learning algorithms, and several algorithms were benchmarked. Em-

pirical results are in agreement with those of [YP97], except for one finding:

The Document Frequency (DF) method was confirmed as an inferior ad-hoc

method, as it had performed significantly worse than every other algorithm

tested. [YP97] also acknowledged the ad-hoc appearance of the DF method,

but its results have suggested that DF performed just as well as the best per-

forming methods. The empirical results from this thesis disagree with this

claim, and would rank the general performance of feature selection methods

as follows:

{χ2, Information Gain, OneR} � {DF, Gain Ratio}

Several Machine Learning algorithms were tuned to their optimal configura-

tions on the training data, and up to 75% F1-Measure and 85% accuracy had

been demonstrated by the best performing classifier - the Support Vector

Machine. This is in agreement with the literature’s informal recognition of

the SVM as the current state-of-the-art classifier.

From the classifiers benchmarks in this thesis, two sets of ranking were de-

rived. By the less commonly used accuracy performance measure, the classi-

fiers as ranked in the following order:

SVM � Näıve Bayes � {kNN-1, kNN-3, J4.8} � OneR � ZeroR

6.1. CONCLUSION 81

By the more commonly used F1-Measure in the IR literature, the classifiers

are ranked in the following order:

SVM � Näıve Bayes � {J4.8, kNN-1, OneR, kNN-3} � ZeroR

In both rankings, the SVM has outperformed every other classifier.

Having integrated the current state-of-the-art Machine Learning algorithm

with a Natural Language interface for customised news delivery, the next

section identifies some research that could lead on from this thesis, in the

never-ending quest for better prediction techniques and natural language

interfaces.

82 CHAPTER 6. SUMMATION

6.2 Future Work

News providers world-wide have embraced the Internet as a news delivery

medium in recent years, and despite the fact that most large players have well

established web presences, revolutionary methods of tailored news services

remain to be found.

Google has recently launched its news service, which scouts 4000+ worldwide

news sources to algorithmically compile a collection of the most relevant ar-

ticles. CNN itself has launched a CNN Newswatch service, where subscribers

use an exclusive software application to monitor topics of their interest, much

like the user preference prediction function provided by this thesis project.

Customised news is therefore an active area with enormous research and

commercial interest.

Research following on from this thesis could investigate the following sugges-

tions, both to advance research in this area as well as to the CNA software

of this thesis:

• [KM01] recently proposed the Co-Training algorithm, which could sig-

nificantly reduce the number of labelled samples needed in order to

train classifiers to their peak performance. The algorithm is simple:

Use the minimal initial training data to train the classifier, then use

the classifier to label other unlabelled data, and add the most confi-

dent ones to the training set. Facility for co-training had already been

implemented in the current CNA code, and preliminary (but inconclu-

sive) results have shown large improvements under certain conditions.

For example, for both the SVM and Naive Bayes classifiers with only

6.2. FUTURE WORK 83

17 initial training data, 35% improvements in accuracy have been seen

through co-training. Rigorous statistical testing of the Co-Training al-

gorithm remain to be conducted, and the results would be highly useful

if proven effective.

• The current Probot script for the CNA can be enhanced to exhibit more

semantic and pragmatic behaviour. For example, if the user is reading

an article about “Republicans campaigning for the Senate”, it would be

desirable to let the user ask for specific articles relating to the current

article, such as asking “Is Bush campaigning with them?” Traditionally,

this would require complex semantic and pragmatic processing, but the

same desired effect could possibly be achieved with simple yet clever

Probot scripts.

• With the voice-mode interaction mode of the current Probot, the user

would have to wait for the script to finish its sentence before issuing

another command. If the user decides on a new course of action half way

through a Probot monologue, the user cannot pre-empt the monologue

to issue the new command. The end-user experience could be improved

drastically if the pre-emption capabilities were implemented. Having

pre-emption also means that Probot can read through articles without

having to prompt the user every paragraph, asking whether or not to

continue reading.

• Latent Semantic Analysis/Indexing is relatively new to Information Re-

trieval, using Linear Algebra theory (Singular Value Decomposition) to

extract and represent documents. LSA seeks to address the shortcom-

ing of current Machine Learning approaches where dimensions in Fea-

ture Vectors represent literal words, rather than concepts. Although

84 CHAPTER 6. SUMMATION

stemming algorithms can trim word suffixes, concepts with several lit-

eral representations (synonyms) would not be captured in the same

Feature Dimensions. Also, literal words often have multiple mean-

ings (polysemy), and current Feature Vectors would likely lead to re-

trieval of irrelevant data. LSA attempts to overcome these problems by

statistically deriving relationships between words and concepts, rather

than making comparisons based on individual words themselves. Early

works have shown promising results in automatic assessment of student

essays, retrieval across different language (English and French) as well

as Information Retrieval. [BDO94]

Appendix A

Sample User Session

Below is a sample session that demonstrates the actual behaviour of the end

system, assuming, of course, that the end user is being cooperative. User

responses are styled this way.

Let me know when you like to hear some news!

alrighty let’s go.

Hi there, have we met before?

no we haven’t.

What user name you would like?

can I have phantom?

That user name is already taken... Let’s try another one.

how about john?

OK, let’s catch up on some news! Would you like to go through

the headlines?

ok what’s new?

Oct 23, 2002 3:30 PM - Military group urges rebellion against

Chavez

85

86 APPENDIX A. SAMPLE USER SESSION

Read it?

nope.

Oct 23, 2002 12:15 PM - N. Korea agrees to nuclear dialogue

Read it?

sure.

From CNN Seoul Bureau Chief Sohn Jie-Ae

Keep going?

yeah.

SEOUL, South Korea (CNN) – South and North Korean negotia-

tors have agreed to cooperate aggressively to resolve all bilateral

issues, including the nuclear issue, through dialogue. More?

ok.

The agreement came after four days of talks in Pyongyang that

had been scheduled before North Korea’s admission earlier this

month

that it had a secret nuclear weapons program.

More?

more.

“In order to guarantee peace and stability on the Korean Penin-

sula, the South and North will actively cooperate in resolving all

the issues, including the nuclear issue, through dialogue,” said the

agreement, which was announced early Wednesday and reported

in pool accounts by South Korean journalists.

More?

no that’s enough.

Oct 23, 2002 12:00 PM - Victim’s mom, killer’s friend helped nab

Ohio sniper

87

Read it?

is there any news about the Bali bombing?

22-Oct-02 - Nightclub terror plans revealed

Read it?

yes.

From CNN Jakarta Bureau Chief Maria Ressa

Keep going?

ok.

JAKARTA, Indonesia (CNN) – An al Qaeda operative now in

U.S. custody has told the FBI about plans to attack popular bars

and nightclubs in Southeast Asia, according to classified docu-

ments.

More?

yeah.

His name is Mohammed Mansour Jabarah, an al Qaeda operative

arrested

in Oman last March.

More?

do you have anything on the new Hannibal movie?

13-Oct-02 - ’Red Dragon’ holds at No. 1

Read it?

yeah that’s it.

LOS ANGELES, California (AP) – Hannibal Lecter stood out in

a crowd of new movies.

Keep going?

yeah.

“Red Dragon,” the third thriller starring Anthony Hopkins as

88 APPENDIX A. SAMPLE USER SESSION

serial killer Lecter, was the No. 1 movie for a second weekend,

taking in $17.6 million and fending off an onslaught of debut films,

according to studio estimates Sunday.

More?

ok.

Reese Witherspoon’s romantic comedy “Sweet Home Alabama”

remained in second place with $14.1 million.

More?

nah.

25-Jul-02 - Review: Myers, cameos make ’Goldmember’ groovy

Read it?

yeah groovy!

By Lisa SchwarzbaumEntertainment Weekly

Keep going?

yea.

(Entertainment Weekly) – Anything short of a billion gajillion

dollars isn’t pay enough to spoil the fun by describing the open-

ing of ”Austin Powers in Goldmember.” Well, maybe for a million

– okay, for 10,000 simoleons. More?

no, I’ve gotta go now, bye!

See you later! Let me know when you like to hear some news!

Bibliography

[AFS01] James F. Allen, George Ferguson, and Amanda Stent. An archi-

tecture for more realistic conversational systems. In Intelligent

User Interfaces, pages 1–8, 2001.

[AKB] Kartik Agaram, Stephen W. Keckler, and Doug Burger. A char-

acterization of speech recognition on modern computer systems.

[Alv02] Sergio A. Alvarez. An exact analytical relation among recall, pre-

cision, and classification accuracy in information retrieval. 2002.

[BDO94] Michael W. Berry, Susan T. Dumais, and Gavin W. O’Brien.

Using linear algebra for intelligent information retrieval. Technical

Report UT-CS-94-270, 1994.

[BHK98] John S. Breese, David Heckerman, and Carl Kadie. Empirical

analysis of predictive algorithms for collaborative filtering. pages

43–52, 1998.

[CBB+98] J. Cassell, T. Bickmore, M. Billinghurst, L. Campbell, K. Chang,

H. Vilhjlmsson, and H. Yan. An architecture for embodied con-

versational characters, 1998.

89

90 BIBLIOGRAPHY

[CBB+99] Justine Cassell, Timothy W. Bickmore, Mark Billinghurst,

L. Campbell, K. Chang, Hannes Hogni Vilhjalmsson, and H. Yan.

Embodiment in conversational interfaces: Rea. In CHI, pages

520–527, 1999.

[Cha00] Chakrabarti. Data mining for hypertext: A tutorial survey.

SIGKDD: SIGKDD Explorations: Newsletter of the Special In-

terest Group (SIG) on Knowledge Discovery and Data Mining,

ACM, 1, 2000.

[Coh95] Paul R. Cohen. Empirical methods for artificial intelligence. The

MIT Press, 1995.

[EMM96] B. Eric, I. Mani, and T. MacMillan. Representational issues in

machine learning of user profiles, 1996.

[Fla98] Sharon Flank. A layered approach to NLP-based information

retrieval. In Christian Boitet and Pete Whitelock, editors, Pro-

ceedings of the Thirty-Sixth Annual Meeting of the Association for

Computational Linguistics and Seventeenth International Confer-

ence on Computational Linguistics, pages 397–403, San Francisco,

California, 1998. Morgan Kaufmann Publishers.

[Gla99] James Glass. Challenges for spoken dialogue systems, 1999.

[Gok99] Anuja Gokhale. Improvements to collaborative filtering algo-

rithms, 1999.

[GSM] Norbert Gerfelder, Ulrike Spierling, and Wolfgang Mller. Novel

user interface technologies and conversational user interfaces for

information appliances.

BIBLIOGRAPHY 91

[HKW] Max Hfferer, Bernd Knaus, and Werner Winiwarter. Cognitive

filtering of information by evolutionary algorithms.

[HL99] Wen-Lin Hsu and Sheau-Dong Lang. Classification algorithms for

NETNEWS articles. In Proceedings of CIKM-99, 8th ACM In-

ternational Conference on Information and Knowledge Manage-

ment, pages 114–121, Kansas City, US, 1999. ACM Press, New

York, US.

[HSD00] P. Husbands, H. Simon, and C. Ding. the use of singular value

decomposition for text retrieval, 2000.

[Joa97] Thorsten Joachims. A probabilistic analysis of the Rocchio algo-

rithm with TFIDF for text categorization. In Douglas H. Fisher,

editor, Proceedings of ICML-97, 14th International Conference on

Machine Learning, pages 143–151, Nashville, US, 1997. Morgan

Kaufmann Publishers, San Francisco, US.

[Joa98] Thorsten Joachims. Text categorization with support vector ma-

chines: learning with many relevant features. In Claire Nédellec

and Céline Rouveirol, editors, Proceedings of ECML-98, 10th Eu-

ropean Conference on Machine Learning, number 1398, pages

137–142, Chemnitz, DE, 1998. Springer Verlag, Heidelberg, DE.

[JPK98] A. Joshi, C. K. Punyapu, and P. Karnam. Personalization asyn-

chronicity to support mobile web access. In Workshop on Web

Information and Data Management, pages 0–, 1998.

[KM01] Svetlana Kiritchenko and Stan Matwin. Email classification with

co-training. 2001.

92 BIBLIOGRAPHY

[Lan95] Ken Lang. NewsWeeder: learning to filter netnews. In Proceed-

ings of the 12th International Conference on Machine Learning,

pages 331–339. Morgan Kaufmann publishers Inc.: San Mateo,

CA, USA, 1995.

[LG94] David D. Lewis and William A. Gale. A sequential algorithm for

training text classifiers. In W. Bruce Croft and Cornelis J. van

Rijsbergen, editors, Proceedings of SIGIR-94, 17th ACM Interna-

tional Conference on Research and Development in Information

Retrieval, pages 3–12, Dublin, IE, 1994. Springer Verlag, Heidel-

berg, DE.

[LR94] David D. Lewis and Marc Ringuette. A comparison of two learn-

ing algorithms for text categorization. In Proceedings of SDAIR-

94, 3rd Annual Symposium on Document Analysis and Informa-

tion Retrieval, pages 81–93, Las Vegas, US, 1994.

[MG87] T. W. Maone and Grant. Intelligent information-sharing systems.

30(5):390–402, May 1987.

[MR95] Kathleen R. McKeown and Dragomir R. Radev. Generating sum-

maries of multiple news articles. In Proceedings, 18th Annual

International ACM SIGIR Conference on Research and Develop-

ment in Information Retrieval, pages 74–82, Seattle, Washington,

1995.

[NT97] G. Nakhaeizadeh and C.C. Taylor, editors. Machine learning and

statistics: the interface. John Wiley and Sons, 1997.

[Ore] Nir Oren. Improving the effectiveness of information retrieval

with genetic programming.

BIBLIOGRAPHY 93

[Por80] Martin F. Porter. An Algorithm for Suffix Stripping Program.

1980.

[PS96] A. Pannu and K. Sycara. A learning personal agent for text

filtering and notification, 1996. Submitted to AAAI 96.

[PSA98] D. Perzanowski, A. Schultz, and W. Adams. Integrating natural

language and gesture in a robotics domain, 1998.

[Qui93] John Ross Quinlan. Programs for Machine Learning. Morgan

Kaufmann Publishers, 1993.

[RIS+94] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl.

GroupLens: An Open Architecture for Collaborative Filtering of

Netnews. In Proceedings of ACM 1994 Conference on Computer

Supported Cooperative Work, pages 175–186, Chapel Hill, North

Carolina, 1994. ACM.

[Sal83] G. Salton. Introduction to Modern Information Retrieval.

McGraw-Hill, 1983.

[Sal88] Gerard Salton. Automatic Text Processing. Addison-Wesley Pub-

lishing Company, 1988.

[Sam01] Claude Sammut. Managing context in a conversational agent.

2001.

[SC93] Tomek Strzalkowski and Jose Perez Carballo. Recent develop-

ments in natural language text retrieval. In Text REtrieval Con-

ference, pages 123–136, 1993.

[She94] Beerud D. Sheth. A learning approach to personalized information

filtering. Master’s thesis, January 1994.

94 BIBLIOGRAPHY

[SM98] Sam Scott and Stan Matwin. Text classification using WordNet

hypernyms. In Sanda Harabagiu, editor, Use of WordNet in Nat-

ural Language Processing Systems: Proceedings of the Conference,

pages 38–44. Association for Computational Linguistics, Somer-

set, New Jersey, 1998.

[SM99] Sam Scott and Stan Matwin. Feature engineering for text classifi-

cation. In Ivan Bratko and Saso Dzeroski, editors, Proceedings of

ICML-99, 16th International Conference on Machine Learning,

pages 379–388, Bled, SL, 1999. Morgan Kaufmann Publishers,

San Francisco, US.

[SS98] A. Smola and B. Scholkopf. A tutorial on support vector regres-

sion, 1998.

[SW94] E. Schweighofer and W. Winiwarter. Intelligent information re-

trieval: Konterm - automatic representation of context related

terms within a knowledge base for a legal expert system, 1994.

[Tec98] Gheorghe Tecuci. Building Intelligent Agents: An Apprenticeship

Multistrategy learning theory, methodology, tool and case studies.

Academic Press, 1998.

[THA+97] Loren Terveen, Will Hill, Brian Amento, David McDonald, and

Josh Creter. PHOAKS: A system for sharing recommendations.

Communications of the ACM, 40(3):59–62, 1997.

[Tip00] M. Tipping. The relevance vector machine, 2000.

[Ucl] Daniel Greening Ucla. Experiences with cooperative moderation

of a usenet newsgroup.

BIBLIOGRAPHY 95

[UF98] L. Ungar and D. Foster. Clustering methods for collaborative

filtering, 1998.

[Vap95] Vladimir N. Vapnik. The Nature of Statistical Learning Theory.

Springer-Verlag, 1995.

[VR79] C. J. Van Rijsbergen. Information Retrieval, 2nd edition. Dept.

of Computer Science, University of Glasgow, 1979.

[Yan99] Yiming Yang. An evaluation of statistical approaches to text

categorization. Information Retrieval, 1(1/2):69–90, 1999.

[YCB+99] Y. Yang, J. Carbonell, R. Brown, T. Pierce, B. Archibald, and

X. Liu. Learning approaches for detecting and tracking news

events, 1999.

[YL99] Y. Yang and X. Liu. A re-examination of text categorization

methods. In 22nd Annual International SIGIR, pages 42–49,

Berkley, August 1999.

[YP97] Yiming Yang and Jan O. Pedersen. A comparative study on

feature selection in text categorization. In Douglas H. Fisher,

editor, Proceedings of ICML-97, 14th International Conference on

Machine Learning, pages 412–420, Nashville, US, 1997. Morgan

Kaufmann Publishers, San Francisco, US.

